Skip to main content
Log in

Twenty-Four-Hour Ambulatory Pulse Wave Analysis in Hypertension Management: Current Evidence and Perspectives

  • Blood Pressure Monitoring and Management (J Cockcroft, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

The predictive value of vascular biomarkers such as pulse wave velocity (PWV), central arterial pressure (CAP), and augmentation index (AIx), obtained through pulse wave analysis (PWA) in resting conditions, has been documented in a variety of patient groups and populations. This allowed to make appropriate recommendations in clinical practice guidelines of several scientific societies. Due to advances in technologies, largely operator-independent methods are currently available for estimating vascular biomarkers also in ambulatory conditions, over the 24 h. According to the acceptable accuracy and reproducibility of 24-h ambulatory PWA, it appears to be a promising tool for evaluating vascular biomarkers in daily life conditions. This approach may provide an opportunity to further improve the early cardiovascular screening in subjects at risk. However, concerning the clinical use of PWA over the 24 h in ambulatory conditions at the moment, there is no sufficient evidence to support its routine clinical use. In particular, long-term outcome studies are needed to show the predictive value of 24-h PWV, CAP, and AIx values, provided by these devices, over and beyond peripheral blood pressure, and to answer the many technical and clinical questions still open. To this regard, the VASOTENS Registry, an international observational prospective study recently started, will help providing answers on a large sample of hypertensive patients recruited worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Palatini P, Casiglia E, Gąsowski J, Głuszek J, Jankowski P, Narkiewicz K, et al. Arterial stiffness, central hemodynamics, and cardiovascular risk in hypertension. Vasc Health Risk Manag. 2011;7:725–39.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.

    Article  PubMed  Google Scholar 

  3. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34:2159–219.

    Article  PubMed  Google Scholar 

  4. Vlachopoulos C, Xaplanteris P, Aboyans V, Brodmann M, Cífková R, Cosentino F, et al. The role of vascular biomarkers for primary and secondary prevention. A position paper from the European Society of Cardiology Working Group on peripheral circulation: Endorsed by the Association for Research into Arterial Structure and Physiology (ARTERY) Society. Atherosclerosis. 2015;241:507–32.

    Article  CAS  PubMed  Google Scholar 

  5. McEniery CM, Cockcroft JR, Roman MJ, Franklin SS, Wilkinson IB. Central blood pressure: current evidence and clinical importance. Eur Heart J. 2014;35:1719–25.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Van Bortel LM, Laurent S, Boutouyrie P, Chowienczyk P, Cruickshank JK, De Backer T, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens. 2012;30:445–8.

    Article  PubMed  Google Scholar 

  7. Stergiou GS, Parati G, Vlachopoulos C, Achimastos A, Andreadis E, Asmar R, et al. Methodology and technology for peripheral and central blood pressure and blood pressure variability measurement: current status and future directions—position statement of the European Society of Hypertension Working Group on blood pressure monitoring and cardiovascular variability. J Hypertens. 2016;34:1665–77.

    Article  CAS  PubMed  Google Scholar 

  8. Nichols W, O’Rourke M, Vlachopoulos C. McDonald’s blood flow in arteries, Sixth Edition: Theoretical, Experimental and Clinical Principles. Boca Raton: CRC Press, 2011.

  9. Tyberg JV, Davies JE, Wang Z, Whitelaw WA, Flewitt JA, Shrive NG, et al. Wave intensity analysis and the development of the reservoir-wave approach. Med Biol Eng Comput. 2009;47:221–32.

    Article  PubMed  Google Scholar 

  10. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1318–27.

    Article  PubMed  Google Scholar 

  11. Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636–46.

    Article  PubMed  Google Scholar 

  12. Vlachopoulos C, Aznaouridis K, O’Rourke MF, Safar ME, Baou K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J. 2010;31:1865–71.

    Article  PubMed  Google Scholar 

  13. Guerin AP, Blacher J, Pannier B, Marchais SJ, Safar ME, London GM. Impact of aortic stiffness attenuation on survival of patients in end-stage renal failure. Circulation. 2001;103:987–92.

    Article  CAS  PubMed  Google Scholar 

  14. Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D, et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation. 2006;113:1213–25.

    Article  CAS  PubMed  Google Scholar 

  15. Townsend RR, Wilkinson IB, Schiffrin EL, Avolio AP, Chirinos JA, Cockcroft JR, et al. Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension. 2015;66:698–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Herbert A, Cruickshank JK, Laurent S, Boutouyrie P, Reference Values for Arterial Measurements Collaboration. Establishing reference values for central blood pressure and its amplification in a general healthy population and according to cardiovascular risk factors. Eur Heart J. 2014;35:3122–33.

    Article  PubMed  Google Scholar 

  17. Chiang CE, Wang TD, Ueng KC, Lin TH, Yeh HI, Chen CY, et al. 2015 guidelines of the Taiwan Society of Cardiology and the Taiwan Hypertension Society for the management of hypertension. J Chin Med Assoc. 2015;78:1–47.

    Article  PubMed  Google Scholar 

  18. Jones CR, Taylor K, Chowienczyk P, Poston L, Shennan AH. A validation of the Mobil O Graph (version 12) ambulatory blood pressure monitor. Blood Press Monit. 2000;5:233–8.

    Article  CAS  PubMed  Google Scholar 

  19. Wei W, Tölle M, Zidek W, van der Giet M. Validation of the mobil-O-Graph: 24 h-blood pressure measurement device. Blood Press Monit. 2010;15:225–8.

    Article  PubMed  Google Scholar 

  20. Franssen PM, Imholz BP. Evaluation of the Mobil-O-Graph new generation ABPM device using the ESH criteria. Blood Press Monit. 2010;15:229–31.

    Article  PubMed  Google Scholar 

  21. Wassertheurer S, Kropf J, Weber T, van der Giet M, Baulmann J, Ammer M, et al. A new oscillometric method for pulse wave analysis: comparison with a common tonometric method. J Hum Hypertens. 2010;24:498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weber T, Wassertheurer S, Rammer M, Maurer E, Hametner B, Mayer CC, et al. Validation of a brachial cuff-based method for estimating central systolic blood pressure. Hypertension. 2011;58:825–32.

    Article  CAS  PubMed  Google Scholar 

  23. Weiss W, Gohlisch C, Harsch-Gladisch C, Tölle M, Zidek W, van der Giet M. Oscillometric estimation of central blood pressure: validation of the Mobil-O-Graph in comparison with the SphygmoCor device. Blood Press Monit. 2012;17:128–31.

    Article  PubMed  Google Scholar 

  24. Luzardo L, Lujambio I, Sottolano M, da Rosa A, Thijs L, Noboa O, et al. 24-h ambulatory recording of aortic pulse wave velocity and central systolic augmentation: a feasibility study. Hypertens Res. 2012;35:980–7.

    Article  PubMed  Google Scholar 

  25. Sarafidis PA, Georgianos PI, Karpetas A, Bikos A, Korelidou L, Tersi M, et al. Evaluation of a novel brachial cuff-based oscillometric method for estimating central systolic pressure in hemodialysis patients. Am J Nephrol. 2014;40:242–50.

    Article  PubMed  Google Scholar 

  26. Feistritzer HJ, Reinstadler SJ, Klug G, Kremser C, Seidner B, Esterhammer R, et al. Comparison of an oscillometric method with cardiac magnetic resonance for the analysis of aortic pulse wave velocity. PLoS One. 2015;10:e0116862.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hametner B, Wassertheurer S, Kropf J, Mayer C, Eber B, Weber T. Oscillometric estimation of aortic pulse wave velocity: comparison with intra-aortic catheter measurements. Blood Press Monit. 2013;18:173–6.

    Article  PubMed  Google Scholar 

  28. Koudryavtcev SA, Lazarev VM. Validation of the BPLab(®) 24-hour blood pressure monitoring system according to the European standard BS EN 1060-4:2004 and British Hypertension Society protocol. Med Devices (Auckl). 2011;4:193–6.

    Article  Google Scholar 

  29. Ledyaev MY, Stepanova OV, Ledyaeva AM. Validation of the BPLab(®) 24-hour blood pressure monitoring system in a pediatric population according to the 1993 British Hypertension Society protocol. Med Devices (Auckl). 2015;8:115–8.

    Article  Google Scholar 

  30. Dorogova IV, Panina ES. Comparison of the BPLab(®) sphygmomanometer for ambulatory blood pressure monitoring with mercury sphygmomanometry in pregnant women: validation study according to the British Hypertension Society protocol. Vasc Health Risk Manag. 2015;11:245–9.

    PubMed  PubMed Central  Google Scholar 

  31. Rogoza AN, Kuznetsov AA. Central aortic blood pressure and augmentation index: comparison between Vasotens and SphygmoCor technology. Res Rep Clin Cardiol. 2012;3:27–33.

    Google Scholar 

  32. Kotovskaya YV, Kobalava ZD, Orlov AV. Validation of the integration of technology that measures additional “vascular” indices into an ambulatory blood pressure monitoring system. Med Devices (Auckl). 2014;7:91–7.

    Google Scholar 

  33. Butlin M, Alqahtani A, Qasem A, Turner M, Avolio AP. 6A.07: Aortic systolic pressure values but not indices derived from waveform features are consistent between brachial cuff-based devices used for estimation of central aortic pressure. J Hypertens. 2015;33(Suppl1):e74–5.

    Article  PubMed  Google Scholar 

  34. Nair D, Tan SY, Gan HW, Lim SF, Tan J, Zhu M, et al. The use of ambulatory tonometric radial arterial wave capture to measure ambulatory blood pressure: the validation of a novel wrist-bound device in adults. J Hum Hypertens. 2008;22:220–2.

    Article  CAS  PubMed  Google Scholar 

  35. Williams B, Lacy PS, Yan P, Hwee CN, Liang C, Ting CM. Development and validation of a novel method to derive central aortic systolic pressure from the radial pressure waveform using an n-point moving average method. J Am Coll Cardiol. 2011;57:951–61.

    Article  PubMed  Google Scholar 

  36. Ott C, Haetinger S, Schneider MP, Pauschinger M, Schmieder RE. Comparison of two noninvasive devices for measurement of central systolic blood pressure with invasive measurement during cardiac catheterization. J Clin Hypertens (Greenwich). 2012;14:575–9.

    Article  Google Scholar 

  37. Theilade S, Hansen TW, Joergensen C, Lajer M, Rossing P. Tonometric devices for central aortic systolic pressure measurements in patients with type 1 diabetes: comparison of the BPro and SphygmoCor devices. Blood Press Monit. 2013;18:156–60.

    Article  PubMed  Google Scholar 

  38. Garcia-Ortiz L, Recio-Rodríguez JI, Canales-Reina JJ, Cabrejas-Sánchez A, Gomez-Arranz A, Magdalena-Belio JF, et al. Comparison of two measuring instruments, B-pro and SphygmoCor system as reference, to evaluate central systolic blood pressure and radial augmentation index. Hypertens Res. 2012;35:617–23.

    Article  PubMed  Google Scholar 

  39. Németh Z, Móczár K, Deák G. Evaluation of the Tensioday ambulatory blood pressure monitor according to the protocols of the British Hypertension Society and the Association for the Advancement of Medical Instrumentation. Blood Press Monit. 2002;7:191–7.

    Article  PubMed  Google Scholar 

  40. Magometschnigg D. Blood pressure and arterial stiffness. A comparison of two devices for measuring augmentationindex and pulse wave velocity. Wien Med Wochenschr. 2005;155:404–10.

    Article  PubMed  Google Scholar 

  41. Rajzer MW, Wojciechowska W, Klocek M, Palka I, Brzozowska-Kiszka M, Kawecka- Jaszcz K. Comparison of aortic pulse wave velocity measured by three techniques: Complior, SphygmoCor and Arteriograph. J Hypertens. 2008;26:2001–7.

    Article  CAS  PubMed  Google Scholar 

  42. Baulmann J, Schillings U, Rickert S, Uen S, Düsing R, Illyes M, et al. A new oscillometric method for assessment of arterial stiffness: comparison with tonometric and piezo-electronic methods. J Hypertens. 2008;26:523–8.

    Article  CAS  PubMed  Google Scholar 

  43. Jatoi NA, Mahmud A, Bennett K, Feely J. Assessment of arterial stiffness in hypertension: comparison of oscillometric (Arteriograph), piezoelectronic (Complior) and tonometric (SphygmoCor) techniques. J Hypertens. 2009;27:2186–91.

    Article  CAS  PubMed  Google Scholar 

  44. Gunjaca G, Jeroncic A, Budimir D, Mudnic I, Kolcic I, Polasek O, et al. A complex pattern of agreement between oscillometric and tonometric measurement of arterial stiffness in a population-based sample. J Hypertens. 2012;30:1444–52.

    Article  CAS  PubMed  Google Scholar 

  45. van Dijk SC, Enneman AW, Swart KM, van Schoor NM, Uitterlinden AG, Smulders YM, et al. Oscillometry and applanation tonometry measurements in older individuals with elevated levels of arterial stiffness. Blood Press Monit. 2013;18:332–8.

    Article  PubMed  Google Scholar 

  46. Ring M, Eriksson MJ, Zierath JR, Caidahl K. Arterial stiffness estimation in healthy subjects: a validation of oscillometric (Arteriograph) and tonometric (SphygmoCor) techniques. Hypertens Res. 2014;37:999–1007.

    Article  PubMed  Google Scholar 

  47. Ikonomidis I, Ntai K, Kadoglou NP, Papadakis I, Kornelakis M, Tritakis V, et al. The evaluation of pulse wave velocity using Arteriograph and Complior apparatus across multiple cohorts of cardiovascular-related diseases. Int J Cardiol. 2013;168:4890–2.

    Article  PubMed  Google Scholar 

  48. Mihalcea DJ, Florescu M, Suran BM, Enescu OA, Mincu RI, Magda S, et al. Comparison of pulse wave velocity assessed by three different techniques: Arteriograph, Complior, and Echo-tracking. Heart Vessel. 2016;31:568–77.

    Article  Google Scholar 

  49. Nemcsik J, Egresits J, El Hadj Othmane T, Fekete BC, Fodor E, Szabó T, et al. Validation of arteriograph—a new oscillometric device to measure arterial stiffness in patients on maintenance hemodialysis. Kidney Blood Press Res. 2009;32:223–9.

    Article  PubMed  Google Scholar 

  50. Horváth IG, Németh A, Lenkey Z, Alessandri N, Tufano F, Kis P, et al. Invasive validation of a new oscillometric device (Arteriograph) for measuring augmentation index, central blood pressure and aortic pulse wave velocity. J Hypertens. 2010;28:2068–75.

    Article  PubMed  Google Scholar 

  51. Rossen NB, Laugesen E, Peters CD, Ebbehøj E, Knudsen ST, Poulsen PL, et al. Invasive validation of arteriograph estimates of central blood pressure in patients with type 2 diabetes. Am J Hypertens. 2014;27:674–9.

    Article  PubMed  Google Scholar 

  52. O’Brien E, Waeber B, Parati G, Staessen J, Myers MG. Blood pressure measuring devices: recommendations of the European Society of Hypertension. BMJ. 2001;322:531–6.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cremer A, Codjo L, Butlin M, Papaioannou G, Yeim S, Jan E, et al. Determination of central blood pressure by a noninvasive method (brachial blood pressure and QKD interval): a noninvasive validation. J Hypertens. 2013;31:1847–52.

    CAS  PubMed  Google Scholar 

  54. Cremer A, Butlin M, Codjo L, Coulon P, Ranouil X, Joret C, et al. Determination of central blood pressure by a noninvasive method (brachial BP and QKD interval). J Hypertens. 2012;30:1533–9.

    Article  CAS  PubMed  Google Scholar 

  55. Goodwin J, Bilous M, Winship S, Finn P, Jones SC. Validation of the Oscar 2 oscillometric 24-h ambulatory blood pressure monitor according to the British Hypertension Society protocol. Blood Press Monit. 2007;12:113–7.

    Article  PubMed  Google Scholar 

  56. Jones SC, Bilous M, Winship S, Finn P, Goodwin J. Validation of the OSCAR 2 oscillometric 24-hour ambulatory blood pressure monitor according to the International Protocol for the validation of blood pressure measuring devices. Blood Press Monit. 2004;9:219–23.

    Article  PubMed  Google Scholar 

  57. Butlin M, Qasem A, Avolio AP. Estimation of central aortic pressure waveform features derived from the brachial cuff volume displacement waveform. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2591–4.

    PubMed  Google Scholar 

  58. Hwang MH, Yoo JK, Kim HK, Hwang CL, Mackay K, Hemstreet O, et al. Validity and reliability of aortic pulse wave velocity and augmentation index determined by the new cuff-based SphygmoCor Xcel. J Hum Hypertens. 2014;28:475–81.

    Article  CAS  PubMed  Google Scholar 

  59. Bilo G, Zorzi C, Ochoa Munera JE, Torlasco C, Giuli V, Parati G. Validation of the Somnotouch-NIBP noninvasive continuous blood pressure monitor according to the European Society of Hypertension International Protocol revision 2010. Blood Press Monit. 2015;20:291–4.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Narayan O, Casan J, Szarski M, Dart AM, Meredith IT, Cameron JD. Estimation of central aortic blood pressure: a systematic meta-analysis of available techniques. J Hypertens. 2014;32:1727–40.

    Article  CAS  PubMed  Google Scholar 

  61. Papaioannou TG, Karageorgopoulou TD, Sergentanis TN, Protogerou AD, Psaltopoulou T, Sharman JE, et al. Accuracy of commercial devices and methods for noninvasive estimation of aortic systolic blood pressure a systematic review and meta-analysis of invasive validation studies. J Hypertens. 2016;34:1237–48.

    Article  CAS  PubMed  Google Scholar 

  62. Cheng HM, Lang D, Tufanaru C, Pearson A. Measurement accuracy of non-invasively obtained central blood pressure by applanation tonometry: a systematic review and meta-analysis. Int J Cardiol. 2013;167:1867–76.

    Article  PubMed  Google Scholar 

  63. Protogerou AD, Argyris A, Nasothimiou E, Vrachatis D, Papaioannou TG, Tzamouranis D, et al. Feasibility and reproducibility of noninvasive 24-h ambulatory aortic blood pressure monitoring with a brachial cuff-based oscillometric device. Am J Hypertens. 2012;25:876–82.

    Article  PubMed  Google Scholar 

  64. Papaioannou TG, Argyris A, Protogerou AD, Vrachatis D, Nasothimiou EG, Sfikakis PP, et al. Non-invasive 24 hour ambulatory monitoring of aortic wave reflection and arterial stiffness by a novel oscillometric device: the first feasibility and reproducibility study. Int J Cardiol. 2013;169:57–61.

    Article  PubMed  Google Scholar 

  65. Posokhov IN, Konradi AO, Shlyakhto EV, Mamontov OV, Orlov AV, Rogoza AN. Day- to-day repeatability of the Pulse Time Index of Norm. Med Devices (Auckl). 2014;7:29–33.

    Article  Google Scholar 

  66. Jankowski P, Bednarek A, Olszanecka A, Windak A, Kawecka-Jaszcz K, Czarnecka D. Twenty-four-hour profile of central blood pressure and central-to-peripheral systolic pressure amplification. Am J Hypertens. 2013;26:27–33.

    Article  PubMed  Google Scholar 

  67. Boggia J, Luzardo L, Lujambio I, Sottolano M, Robaina S, Thijs L, et al. The diurnal profile of central hemodynamics in a general Uruguayan population. Am J Hypertens. 2016;29:737–46.

    Article  PubMed  Google Scholar 

  68. Protogerou AD, Argyris AA, Papaioannou TG, Kollias GE, Konstantonis GD, Nasothimiou E, et al. Left-ventricular hypertrophy is associated better with 24-h aortic pressure than 24-h brachial pressure in hypertensive patients: the SAFAR study. J Hypertens. 2014;32:1805–14.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang Y, Kollias G, Argyris AA, Papaioannou TG, Tountas C, Konstantonis GD, et al. Association of left ventricular diastolic dysfunction with 24-h aortic ambulatory blood pressure: the SAFAR study. J Hum Hypertens. 2015;29:442–8.

    Article  CAS  PubMed  Google Scholar 

  70. Aissopou EK, Argyris AA, Nasothimiou EG, Konstantonis GD, Tampakis K, Tentolouris N, et al. Ambulatory aortic stiffness is associated with narrow retinal arteriolar caliber in hypertensives: the SAFAR study. Am J Hypertens. 2016;29:626–33.

    Article  PubMed  Google Scholar 

  71. Ware LJ, Rennie KL, Gafane LF, Nell TM, Thompson JE, Van Rooyen JM, et al. Masked hypertension in low-income South African adults. J Clin Hypertens (Greenwich). 2016;18:396–404.

    Article  Google Scholar 

  72. Elsurer R, Afsar B. Serum uric acid and arterial stiffness in hypertensive chronic kidney disease patients: sex-specific variations. Blood Press Monit. 2014;19:271–9.

    Article  PubMed  Google Scholar 

  73. Elsurer R, Afsar B. Morning blood pressure surge is associated with serum gamma-glutamyltransferase activity in essential hypertensive patients. J Hum Hypertens. 2015;29:331–6.

    Article  CAS  PubMed  Google Scholar 

  74. Afsar B, Elsurer R. The relationship between magnesium and ambulatory blood pressure, augmentation index, pulse wave velocity, total peripheral resistance, and cardiac output in essential hypertensive patients. J Am Soc Hypertens. 2014;8:28–35.

    Article  CAS  PubMed  Google Scholar 

  75. Hanssen H, Nussbaumer M, Moor C, Cordes M, Schindler C, Schmidt-Trucksäss A. Acute effects of interval versus continuous endurance training on pulse wave reflection in healthy young men. Atherosclerosis. 2015;238:399–406.

    Article  CAS  PubMed  Google Scholar 

  76. Korkmaz H, Sahin F, Ipekci SH, Temel T, Kebapcilar L. Increased pulse wave velocity and relationship with inflammation, insulin, and insulin resistance in inflammatory bowel disease. Eur J Gastroenterol Hepatol. 2014;26:725–32.

    Article  CAS  PubMed  Google Scholar 

  77. Korkmaz H, Sozen M, Kebapcilar L. Increased arterial stiffness and its relationship with inflammation, insulin, and insulin resistance in celiac disease. Eur J Gastroenterol Hepatol. 2015;27:1193–9.

    Article  CAS  PubMed  Google Scholar 

  78. Hillebrand M, Nouri G, Hametner B, Parragh S, Köster J, Mortensen K, et al. Ambulatory (24 h) blood pressure and arterial stiffness measurement in Marfan syndrome patients: a case control feasibility and pilot study. BMC Cardiovasc Disord. 2016;16:81.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Maloberti A, Cesana F, Hametner B, Dozio D, Villa P, Hulpke-Wette M, et al. Increased nocturnal heart rate and wave reflection are early markers of cardiovascular disease in Williams-Beuren syndrome children. J Hypertens. 2015;33:804–9.

    Article  CAS  PubMed  Google Scholar 

  80. Yilmaz S, Celik G, Esmen SE. Assessment of arterial stiffness in patients with inactive and active Behçet’s disease. Scand J Rheumatol. 2014;43:63–9.

    Article  CAS  PubMed  Google Scholar 

  81. Karpetas A, Sarafidis PA, Georgianos PI, Protogerou A, Vakianis P, Koutroumpas G, et al. Ambulatory recording of wave reflections and arterial stiffness during intra- and interdialytic periods in patients treated with dialysis. Clin J Am Soc Nephrol. 2015;10:630–8.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Koutroumbas G, Georgianos PI, Sarafidis PA, Protogerou A, Karpetas A, Vakianis P, et al. Ambulatory aortic blood pressure, wave reflections and pulse wave velocity are elevated during the third in comparison to the second interdialytic day of the long interval in chronic haemodialysis patients. Nephrol Dial Transplant. 2015;30:2046–53.

    Article  PubMed  Google Scholar 

  83. Kuznetsova TY, Korneva VA, Bryantseva EN, Barkan VS, Orlov AV, Posokhov IN, et al. The 24-hour pulse wave velocity, aortic augmentation index, and central blood pressure in normotensive volunteers. Vasc Health Risk Manag. 2014;10:247–51.

    PubMed  PubMed Central  Google Scholar 

  84. Omboni S, Posokhov IN, Rogoza AN. Evaluation of 24-hour arterial stiffness indices and central hemodynamics in healthy normotensive subjects versus treated or untreated hypertensive patients: a feasibility study. Int J Hypertens. 2015;2015:601812.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Omboni S, Posokhov IN, Rogoza AN. 3D.05: relationship between 24-hour blood pressure variability and 24-hour aortic pressure and stiffness in hypertensive patients. J Hypertens. 2015;33(Suppl1):e41–2.

    Article  PubMed  Google Scholar 

  86. Posokhov IN, Kulikova NN, Starchenkova IV, Grigoricheva EA, Evdokimov VV, Orlov AV, et al. The “Pulse Time Index of Norm” highly correlates with the leftventricular mass index in patients with arterial hypertension. Vasc Health Risk Manag. 2014;10:139–44.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Minyukhina IE, Lipatov KS, Posokhov IN. Analysis of 24-hour pulse wave velocity in patients with renal transplantation. Int J Nephrol Renov Dis. 2013;6:125–9.

    Google Scholar 

  88. Aksenova TA, Gorbunov VV, Parkhomenko IV. 24-hour monitoring central aortic pressure in patients with hypertensive disease and concomitant chronic obstructive pulmonary disease. Klin Med (Mosk). 2013;91:43–7.

    CAS  Google Scholar 

  89. Theilade S, Lajer M, Hansen TW, Joergensen C, Persson F, Andrésdottir G, et al. 24-hour central aortic systolic pressure and 24-hour central pulse pressure are related to diabetic complications in type 1 diabetes—a cross-sectional study. Cardiovasc Diabetol. 2013;12:122.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Williams B, Lacy PS, Baschiera F, Brunel P, Düsing R. Novel description of the 24-hour circadian rhythms of brachial versus central aortic blood pressure and the impact of blood pressure treatment in a randomized controlled clinical trial: the Ambulatory Central Aortic Pressure (AmCAP) Study. Hypertension. 2013;61:1168–76.

    Article  CAS  PubMed  Google Scholar 

  91. Teong HH, Chin AM, Sule AA, Tay JC. Effect of angiotensin receptor blockade on central aortic systolic blood pressure in hypertensive Asians measured using radial tonometry: an open prospective cohort study. Singap Med J. 2016;57:384–9.

    Article  Google Scholar 

  92. Celik G, Yilmaz S, Kebapcilar L, Gundogdu A. Central arterial characteristics of gout patients with chronic kidney diseases. Int J Rheum Dis. 2015. doi:10.1111/1756-185X.12689.

    PubMed  Google Scholar 

  93. Gosse P, Cremer A, Papaioannou G, Yeim S. Arterial stiffness from monitoring of timing of Korotkoff sounds predicts the occurrence of cardiovascular events independently of left ventricular mass in hypertensive patients. Hypertension. 2013;62:161–7.

    Article  CAS  PubMed  Google Scholar 

  94. Omboni S, Posokhov IN, Parati G, Avolio A, Rogoza AN, Kotovskaya YV, et al. Vascular Health Assessment of The Hypertensive Patients (VASOTENS) Registry: study protocol of an international, web-based telemonitoring registry for ambulatory blood pressure and arterial stiffness. JMIR Res Prot. 2016;5:e137.

    Article  Google Scholar 

  95. Wilkinson IB, McEniery CM, Schillaci G, Boutouyrie P, Segers P, Donald A, et al. ARTERY Society guidelines for validation of non-invasive haemodynamic measurement devices: part 1, arterial pulse wave velocity. Artery Res. 2010;4:34–40.

    Article  Google Scholar 

  96. Parati G, Stergiou G, O’Brien E, Asmar R, Beilin L, Bilo G, et al. European Society of Hypertension practice guidelines for ambulatory blood pressure monitoring. J Hypertens. 2014;32:1359–66.

    Article  CAS  PubMed  Google Scholar 

  97. Reference Values for Arterial Stiffness’ Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur Heart J. 2010;31:2338–50.

    Article  Google Scholar 

  98. Engelen L, Bossuyt J, Ferreira I, van Bortel LM, Reesink KD, Segers P, et al. Reference values for local arterial stiffness. Part A: carotid artery. J Hypertens. 2015;33:1981–96.

    Article  CAS  PubMed  Google Scholar 

  99. Bossuyt J, Engelen L, Ferreira I, Stehouwer CD, Boutouyrie P, Laurent S, et al. Reference values for local arterial stiffness. Part B: femoral artery. J Hypertens. 2015;33:1997–2009.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the manufacturers of the devices described in the paper for providing all the relevant updated information needed for completing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Omboni.

Ethics declarations

Conflict of Interest

SO is scientific consultant of Biotechmed Ltd., provider of the telemedicine services used in the VASOTENS Registry. ADP’s research group has received non-restricted educational grant and research equipment from I.E.M. GmbH, a manufacturer of 24-h pulse wave analysis devices.

The other authors declare no conflicts of interest regarding the publication of this paper.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Source of Funding

The authors received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors for the preparation of the manuscript.

Additional information

This article is part of the Topical Collection on Blood Pressure Monitoring and Management

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omboni, S., Posokhov, I.N., Kotovskaya, Y.V. et al. Twenty-Four-Hour Ambulatory Pulse Wave Analysis in Hypertension Management: Current Evidence and Perspectives. Curr Hypertens Rep 18, 72 (2016). https://doi.org/10.1007/s11906-016-0681-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-016-0681-2

Keywords

Navigation