Skip to main content

Advertisement

Log in

Current Role for Biomarkers in Clinical Diagnosis of Alzheimer Disease and Frontotemporal Dementia

  • Dementia (J Pillai, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of review Alzheimer’s disease (AD) and frontotemporal dementia can often be diagnosed accurately with careful clinical history, cognitive testing, neurological examination, and structural brain MRI. However, there are certain circumstances wherein detection of specific biomarkers of neurodegeneration or underlying AD pathology will impact the clinical diagnosis or treatment plan. We will review the currently available biomarkers for AD and frontotemporal dementia (FTD) and discuss their clinical importance.

Recent findings With the advent of 18F-labeled tracers that bind amyloid plaques, amyloid PET is now clinically available for the detection of amyloid pathology and to aid in a biomarker-supported diagnosis of AD or mild cognitive impairment (MCI) due to AD. It is not yet possible to test for the specific FTD pathologies (tau or TDP-43); however, a diagnosis of FTD may be “imaging supported” based upon specific MRI or FDG-PET findings. Cerebrospinal fluid measures of amyloid-beta, total-tau, and phospho-tau are clinically available and allow detection of both of the cardinal pathologies of AD: amyloid and tau pathology.

Summary It is appropriate to pursue biomarker testing in cases of MCI and dementia when there remains diagnostic uncertainty and the result will impact diagnosis or treatment. Practically speaking, due to the rising prevalence of amyloid positivity with advancing age, measurement of biomarkers in cases of MCI and dementia is most helpful in early-onset patients, patients with atypical clinical presentations, or when considering referral for AD clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Beach TG, Monsell SE, Phillips LE, Kukull W. Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer disease centers, 2005–2010. J Neuropathol Exp Neurol. 2012;71(4):266–73.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Balasa M, Gelpi E, Martin I, Antonell A, Rey MJ, Grau-Rivera O, et al. Diagnostic accuracy of behavioral variant frontotemporal dementia consortium criteria (FTDC) in a clinicopathological cohort. Neuropathol Appl Neurobiol. 2015;41(7):882–92.

    Article  CAS  PubMed  Google Scholar 

  3. • Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Cedarbaum J, et al. 2014 update of the Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception. Alzheimers Dement. 2015;11(6):e1–120. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is one of the most important studies of longitudinal changes in cognition and biomarkers in healthy elderly, MCI, and AD patients in the USA, and has developed numerous standard imaging protocols and analytics for the field. Several studies worldwide have been partially modeled on ADNI, in Europe, Japan, and Australia

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367(9):795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McKhann GM, Knopman DS. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer's & dementia : the journal of the Alzheimer's Association. 2011;7(3):263–9.

    Article  Google Scholar 

  6. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51(6):1546–54.

    Article  CAS  PubMed  Google Scholar 

  7. Diehl-Schmid J, Grimmer T, Drzezga A, Bornschein S, Perneczky R, Forstl H, et al. Longitudinal changes of cerebral glucose metabolism in semantic dementia. Dement Geriatr Cogn Disord. 2006;22(4):346–51.

    Article  CAS  PubMed  Google Scholar 

  8. Bang J, Spina S, Miller BL. Frontotemporal dementia. Lancet. 2015;386(10004):1672–82.

    Article  PubMed  Google Scholar 

  9. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(Pt 9):2456–77.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mesulam M. Primary progressive aphasia—a language-based dementia. N Engl J Med. 2003;349(16):1535–42.

    Article  CAS  PubMed  Google Scholar 

  11. Kertesz A, McMonagle P, Blair M, Davidson W, Munoz DG. The evolution and pathology of frontotemporal dementia. Brain. 2005;128(Pt 9):1996–2005.

    Article  PubMed  Google Scholar 

  12. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006–14.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sajjadi SA, Sheikh-Bahaei N, Cross J, Gillard JH, Scoffings D, Nestor PJ. Can MRI visual assessment differentiate the variants of primary-progressive aphasia? AJNR Am J Neuroradiol. 2017;38(5):954–60.

    Article  CAS  PubMed  Google Scholar 

  14. Cairns NJ, Bigio EH, Mackenzie IR, Neumann M, Lee VM, Hatanpaa KJ, et al. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the consortium for frontotemporal lobar degeneration. Acta Neuropathol. 2007;114(1):5–22.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Neumann M, Rademakers R, Roeber S, Baker M, Kretzschmar HA, Mackenzie IR. A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain. 2009;132(Pt 11):2922–31.

    Article  PubMed  PubMed Central  Google Scholar 

  16. NICE. Dementia: supporting people with dementia and their carers in health and social care | Guidance and guidelines |National Institute for Health and Care Excellence. 2016.

  17. Soucy JP, Bartha R, Bocti C, Borrie M, Burhan AM, Laforce R, et al. Clinical applications of neuroimaging in patients with Alzheimer’s disease: a review from the fourth Canadian consensus conference on the diagnosis and treatment of dementia 2012. Alzheimers Res Ther. 2013;5(Suppl 1):S3.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Filippi M, Agosta F, Barkhof F, Dubois B, Fox NC, Frisoni GB, et al. EFNS task force: the use of neuroimaging in the diagnosis of dementia. Eur J Neurol. 2012;19(12):e131–40. 1487-501

    Article  CAS  PubMed  Google Scholar 

  19. Ossenkoppele R, Cohn-Sheehy BI, La Joie R, Vogel JW, Moller C, Lehmann M, et al. Atrophy patterns in early clinical stages across distinct phenotypes of Alzheimer’s disease. Hum Brain Mapp 2015;36(11):4421–4437.

  20. Pan PL, Song W, Yang J, Huang R, Chen K, Gong QY, et al. Gray matter atrophy in behavioral variant frontotemporal dementia: a meta-analysis of voxel-based morphometry studies. Dement Geriatr Cogn Disord. 2012;33(2–3):141–8.

    Article  CAS  PubMed  Google Scholar 

  21. Rohrer JD, Warren JD, Modat M, Ridgway GR, Douiri A, Rossor MN, et al. Patterns of cortical thinning in the language variants of frontotemporal lobar degeneration. Neurology. 2009;72(18):1562–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gorno-Tempini ML, Dronkers NF, Rankin KP, Ogar JM, Phengrasamy L, Rosen HJ, et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol. 2004;55(3):335–46.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Scheltens P, Leys D, Barkhof F. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol. 1992;8:967–72.

    Google Scholar 

  24. Pasquier F, Leys D, Weerts JG, Mounier-Vehier F, Barkhof F, Scheltens P. Inter- and intraobserver reproducibility of cerebral atrophy assessment on MRI scans with hemispheric infarcts. Eur Neurol. 1996;36(5):268–72.

    Article  CAS  PubMed  Google Scholar 

  25. • Harper L, Barkhof F, Fox NC, Schott JM. Using visual rating to diagnose dementia: a critical evaluation of MRI atrophy scales. J Neurol Neurosurg Psychiatry. 2015;86(11):1225–33. In this systemic review, different cerebral atrophy rating scales for dementia have been examined to highlight the diagnostic potential of these clinically applicable tools

    Article  PubMed  Google Scholar 

  26. Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjogren M, et al. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke. 2001;32(6):1318–22.

    Article  CAS  PubMed  Google Scholar 

  27. Wahlund LO, Westman E, van Westen D, Wallin A, Shams S, Cavallin L, et al. Imaging biomarkers of dementia: recommended visual rating scales with teaching cases. Insights Imaging 2017;8(1):79–90.

  28. O'Brien JT, Firbank MJ, Davison C, Barnett N, Bamford C, Donaldson C, et al. 18F-FDG PET and perfusion SPECT in the diagnosis of Alzheimer and Lewy body dementias. J Nucl Med. 2014;55(12):1959–65.

    Article  PubMed  Google Scholar 

  29. Smailagic N, Vacante M, Hyde C, Martin S, Ukoumunne O, Sachpekidis C. (1)(8)F-FDG PET for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane database Syst rev. 2015;1:Cd010632. In this Cochrane systemic review, authors searched all the major databases and included and analyzed all the studies that evaluated the diagnostic accuracy of FDG PET to detemine the conversion from MCI to AD or other forms of dementia.

  30. Foster NL, Heidebrink JL, Clark CM, Jagust WJ, Arnold SE, Barbas NR, et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain. 2007;130(Pt 10):2616–35.

    Article  PubMed  Google Scholar 

  31. Lim SM, Katsifis A, Villemagne VL, Best R, Jones G, Saling M, et al. The 18F-FDG PET cingulate island sign and comparison to 123I-beta-CIT SPECT for diagnosis of dementia with Lewy bodies. J Nucl Med. 2009;50(10):1638–45.

    Article  CAS  PubMed  Google Scholar 

  32. Kono AK, Ishii K, Sofue K, Miyamoto N, Sakamoto S, Mori E. Fully automatic differential diagnosis system for dementia with Lewy bodies and Alzheimer’s disease using FDG-PET and 3D-SSP. Eur J Nucl Med Mol Imaging. 2007;34(9):1490–7.

    Article  PubMed  Google Scholar 

  33. Arlt S, Brassen S, Jahn H, Wilke F, Eichenlaub M, Apostolova I, et al. Association between FDG uptake, CSF biomarkers and cognitive performance in patients with probable Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2009;36(7):1090–100.

    Article  CAS  PubMed  Google Scholar 

  34. Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging. 2003;30(8):1104–13.

    Article  PubMed  Google Scholar 

  36. Silverman DH, Small GW, Phelps ME. Clinical value of neuroimaging in the diagnosis of dementia. Sensitivity and specificity of regional cerebral metabolic and other parameters for early identification of Alzheimer’s disease. Clin Positron Imaging. 1999;2(3):119–30.

    Article  PubMed  Google Scholar 

  37. Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging. 2005;32(4):486–510.

    Article  CAS  PubMed  Google Scholar 

  38. Lehmann M, Ghosh PM, Madison C, Laforce R Jr, Corbetta-Rastelli C, Weiner MW, et al. Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer’s disease. Brain. 2013;136(Pt 3):844–58.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Verfaillie SC, Adriaanse SM, Binnewijzend MA, Benedictus MR, Ossenkoppele R, Wattjes MP, et al. Cerebral perfusion and glucose metabolism in Alzheimer’s disease and frontotemporal dementia: two sides of the same coin? Eur Radiol. 2015;25(10):3050–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Diehl-Schmid J, Grimmer T, Drzezga A, Bornschein S, Riemenschneider M, Forstl H, et al. Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18F-FDG-PET-study. Neurobiol Aging. 2007;28(1):42–50.

    Article  CAS  PubMed  Google Scholar 

  41. Rabinovici GD, Jagust WJ, Furst AJ, Ogar JM, Racine CA, Mormino EC, et al. Abeta amyloid and glucose metabolism in three variants of primary progressive aphasia. Ann Neurol. 2008;64(4):388–401.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ng S, Villemagne VL, Berlangieri S, Lee ST, Cherk M, Gong SJ, et al. Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for detection of Alzheimer’s disease. J Nucl Med. 2007;48(4):547–52.

    Article  CAS  PubMed  Google Scholar 

  43. Womack KB, Diaz-Arrastia R, Aizenstein HJ, Arnold SE, Barbas NR, Boeve BF, et al. Temporoparietal hypometabolism in frontotemporal lobar degeneration and associated imaging diagnostic errors. Arch Neurol. 2011;68(3):329–37.

    Article  PubMed  Google Scholar 

  44. Rabinovici GD, Rosen HJ, Alkalay A, Kornak J, Furst AJ, Agarwal N, et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology. 2011;77(23):2034–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Herholz K. The role of PET quantification in neurological imaging: FDG and amyloid imaging in dementia. Clinical and Translational Imaging. 2014;2(4):321–30.

    Article  Google Scholar 

  46. Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F-Flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol 2010;68(3):319–329.

  47. Wong DF, Rosenberg PB, Zhou Y, Kumar A, Raymont V, Ravert HT, et al. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir [corrected] F 18). Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2010;51(6):913–20.

    Article  CAS  Google Scholar 

  48. Rowe CC, Ackerman U, Browne W, Mulligan R, Pike KL, O'Keefe G, et al. Imaging of amyloid beta in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol. 2008;7(2):129–35.

    Article  CAS  PubMed  Google Scholar 

  49. Wolk DA, Zhang Z, Boudhar S, Clark CM, Pontecorvo MJ, Arnold SE. Amyloid imaging in Alzheimer’s disease: comparison of florbetapir and Pittsburgh compound-B positron emission tomography. J Neurol Neurosurg Psychiatry. 2012;83(9):923–6.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Landau SM, Thomas BA, Thurfjell L, Schmidt M, Margolin R, Mintun M, et al. Amyloid PET imaging in Alzheimer’s disease: a comparison of three radiotracers. Eur J Nucl Med Mol Imaging. 2014;41(7):1398–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Klunk WE, Wang Y, Huang GF, Debnath ML, Holt DP, Shao L, et al. The binding of 2-(4′-methylaminophenyl)benzothiazole to postmortem brain homogenates is dominated by the amyloid component. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2003;23(6):2086–92.

    CAS  Google Scholar 

  52. Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh compound-B. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2005;25(11):1528–47.

    Article  CAS  Google Scholar 

  53. Zhang W, Kung MP, Oya S, Hou C, Kung HF. 18F-labeled styrylpyridines as PET agents for amyloid plaque imaging. Nucl Med Biol. 2007;34(1):89–97.

    Article  CAS  PubMed  Google Scholar 

  54. Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA, et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA. 2011;305(3):275–83.

    Article  CAS  PubMed  Google Scholar 

  55. Ikonomovic MD, Klunk WE, Abrahamson EE, Mathis CA, Price JC, Tsopelas ND, et al. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain. 2008;131(Pt 6):1630–45.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Choi SR, Schneider JA, Bennett DA, Beach TG, Bedell BJ, Zehntner SP, et al. Correlation of amyloid PET ligand florbetapir F 18 binding with Abeta aggregation and neuritic plaque deposition in postmortem brain tissue. Alzheimer Dis Assoc Disord. 2012;26(1):8–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Curtis C, Gamez JE, Singh U, Sadowsky CH, Villena T, Sabbagh MN, et al. Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. JAMA Neurol. 2015;72(3):287–94.

    Article  PubMed  Google Scholar 

  58. Ong KT, Villemagne VL, Bahar-Fuchs A, Lamb F, Langdon N, Catafau AM, et al. Abeta imaging with 18F-florbetaben in prodromal Alzheimer’s disease: a prospective outcome study. J Neurol Neurosurg Psychiatry. 2015;86(4):431–6.

    Article  PubMed  Google Scholar 

  59. Villemagne VL, Mulligan RS, Pejoska S, Ong K, Jones G, O'Keefe G, et al. Comparison of 11C-PiB and 18F-florbetaben for Abeta imaging in ageing and Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2012;39(6):983–9.

    Article  CAS  PubMed  Google Scholar 

  60. Archer HA, Edison P, Brooks DJ, Barnes J, Frost C, Yeatman T, et al. Amyloid load and cerebral atrophy in Alzheimer’s disease: an 11C-PIB positron emission tomography study. Ann Neurol. 2006;60(1):145–7.

    Article  PubMed  Google Scholar 

  61. Yeo JM, Waddell B, Khan Z, Pal S. A systematic review and meta-analysis of (18)F-labeled amyloid imaging in Alzheimer’s disease. Alzheimers Dement (Amst). 2015;1(1):5–13. In this systemic review and meta-analysis, the authors have included 19 studies investigating 682 AD patients. They calculated pooled weighted sensitivity, specificity, and odds ratios for each of 18F-labeled amyloid tracer.

  62. Laforce R Jr, Rabinovici GD. Amyloid imaging in the differential diagnosis of dementia: review and potential clinical applications. Alzheimers Res Ther. 2011;3(6):31.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Johnson KA, Minoshima S, Bohnen NI, Donohoe KJ, Foster NL, Herscovitch P, et al. Update on appropriate use criteria for amyloid PET imaging: dementia experts, mild cognitive impairment, and education. Amyloid imaging task force of the Alzheimer’s Association and Society for Nuclear Medicine and Molecular Imaging. Alzheimers Dement. 2013;9(4):e106–9.

    Article  PubMed  Google Scholar 

  64. Johnson KA, Minoshima S, Bohnen NI, Donohoe KJ, Foster NL, Herscovitch P, et al. Appropriate use criteria for amyloid PET: a report of the amyloid imaging task force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association. Alzheimers Dement. 2013;(1):9, e-1–e16.

  65. Laforce R, Rosa-Neto P, Soucy JP, Rabinovici GD, Dubois B, Gauthier S. Canadian consensus guidelines on use of amyloid imaging in Canada: update and future directions from the specialized task force on amyloid imaging in Canada. Can J Neurol Sci. 2016;43(4):503–12.

    Article  PubMed  Google Scholar 

  66. Jagust WJ, Bandy D, Chen K, Foster NL, Landau SM, Mathis CA, et al. The Alzheimer’s disease neuroimaging initiative positron emission tomography core. Alzheimers Dement. 2010;6(3):221–9.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rabinovici GD. Impact of amyloid PET on patient management: early results from the IDEAS study. AAIC; London2017.

  68. Landau SM, Fero A, Baker SL, Koeppe R, Mintun M, Chen K, et al. Measurement of longitudinal beta-amyloid change with 18F-florbetapir PET and standardized uptake value ratios. J Nucl Med. 2015;56(4):567–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ossenkoppele R, Jansen WJ, Rabinovici GD, Knol DL, van der Flier WM, van Berckel BN, et al. Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. JAMA. 2015;313(19):1939–49.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Harkins K, Sankar P, Sperling R, Grill JD, Green RC, Johnson KA, et al. Development of a process to disclose amyloid imaging results to cognitively normal older adult research participants. Alzheimers Res Ther. 2015;7(1):26.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Grill JD, Apostolova LG, Bullain S, Burns JM, Cox CG, Dick M, et al. Communicating mild cognitive impairment diagnoses with and without amyloid imaging. Alzheimers Res Ther. 2017;9(1):35.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Braak H, Braak E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging. 1997;18(4):351–7.

    Article  CAS  PubMed  Google Scholar 

  73. Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol. 2012;71(5):362–81.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bierer LM, Hof PR, Purohit DP, Carlin L, Schmeidler J, Davis KL, et al. Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer’s disease. Arch Neurol. 1995;52(1):81–8.

    Article  CAS  PubMed  Google Scholar 

  75. Whitwell JL, Josephs KA, Murray ME, Kantarci K, Przybelski SA, Weigand SD, et al. MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel-based morphometry study. Neurology. 2008;71(10):743–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Okamura N, Harada R, Furukawa K, Furumoto S, Tago T, Yanai K, et al. Advances in the development of tau PET radiotracers and their clinical applications. Ageing Res Rev. 2016;30:107–13.

    Article  CAS  PubMed  Google Scholar 

  77. Olsson B, Lautner R, Andreasson U, Ohrfelt A, Portelius E, Bjerke M, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 2016;15(7):673–84. This tour de force review and meta-analysis of 231 articles containing 15,699 patients with AD and 13,018 controls identified the most consistent AD biomarkers as CSF T-tau, P-tau, Aβ42, and neurofilament

  78. Molinuevo JL, Blennow K, Dubois B, Engelborghs S, Lewczuk P, Perret-Liaudet A, et al. The clinical use of cerebrospinal fluid biomarker testing for Alzheimer’s disease diagnosis: a consensus paper from the Alzheimer’s biomarkers standardization initiative. Alzheimers Dement. 2014;10(6):808–17.

    Article  PubMed  Google Scholar 

  79. Ritchie C, Smailagic N, Noel-Storr AH, Ukoumunne O, Ladds EC, Martin S. CSF tau and the CSF tau/ABeta ratio for the diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2017;3:Cd010803. This Cochrane Systemic Review urged caution in the use of CSF tau and CSF tau/ABeta ratio in patients with MCI due to risk of misdiagnosis or overdiagnosis

  80. Perret-Liaudet A, Pelpel M, Tholance Y, Dumont B, Vanderstichele H, Zorzi W, et al. Risk of Alzheimer’s disease biological misdiagnosis linked to cerebrospinal collection tubes. J Alzheimers Dis. 2012;31(1):13–20.

    PubMed  Google Scholar 

  81. Irwin DJ, Lleo A, Xie SX, McMillan CT, Wolk DA, Lee EB, et al. Ante mortem cerebrospinal fluid tau levels correlate with postmortem tau pathology in frontotemporal lobar degeneration. Ann Neurol. 2017;82(2):247–58.

    Article  CAS  PubMed  Google Scholar 

  82. Scherling CS, Hall T, Berisha F, Klepac K, Karydas A, Coppola G, et al. Cerebrospinal fluid neurofilament concentration reflects disease severity in frontotemporal degeneration. Ann Neurol. 2014;75(1):116–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Meeter LH, Kaat LD, Rohrer JD, van Swieten JC. Imaging and fluid biomarkers in frontotemporal dementia. Nat Rev Neurol 2017;13(7):406–419.

  84. O'Bryant SE, Mielke MM, Rissman RA, Lista S, Vanderstichele H, Zetterberg H, et al. Blood-based biomarkers in Alzheimer disease: current state of the science and a novel collaborative paradigm for advancing from discovery to clinic. Alzheimers Dement. 2017;13(1):45–58.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimee L. Pierce MD.

Ethics declarations

Conflict of Interest

N.S.-B. and S.A.S. each declare no potential conflicts of interest.

A.L.P. reports contracts from Avid Radiopharmaceuticals, Eli Lilly, Transition Therapeutics (previously Elan), Stemedica, Biogen, Janssen, Axovant, and Roche/Genentech, as well as personal fees from Lundbeck, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Dementia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikh-Bahaei, N., Sajjadi, S.A. & Pierce, A.L. Current Role for Biomarkers in Clinical Diagnosis of Alzheimer Disease and Frontotemporal Dementia. Curr Treat Options Neurol 19, 46 (2017). https://doi.org/10.1007/s11940-017-0484-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-017-0484-z

Keywords

Navigation