Skip to main content
Log in

Protective Effect of Naringenin Against Lead-Induced Oxidative Stress in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Oxidative stress is thought to be involved in lead-induced toxicity. The aim of this study was to investigate the possible protective role of naringenin on lead-induced oxidative stress in the liver and kidney of rats. In the present investigation, lead acetate (500 mg Pb/L) was administered orally for 8 weeks to induce hepatotoxicity and nephrotoxicity. The levels of hepatic and renal markers such as alanine aminotransferase, aspartate aminotransferase, urea, uric acid, and creatinine were significantly (P < 0.05) increased following lead acetate administration. Lead-induced oxidative stress in liver and kidney tissue was indicated by a significant (P < 0.05) increase in the level of maleic dialdehyde and decreased levels of reduced glutathione, superoxide dismutase, catalase, and glutathione peroxidase. Naringenin markedly attenuated lead-induced biochemical alterations in serum, liver, and kidney tissues (P < 0.05). The present study suggests that naringenin shows antioxidant activity and plays a protective role against lead-induced oxidative damage in the liver and kidney of rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xia D, Yu X, Liao S et al (2010) Protective effect of Smilax glabra extract against lead-induced oxidative stress in rats. J Ethnopharmacol 130:414–420

    Article  PubMed  Google Scholar 

  2. Machida M, Sun SJ, Oguma E et al (2009) High bone matrix turnover predicts blood levels of lead among perimenopausal women. Environ Res 109:880–886

    Article  PubMed  CAS  Google Scholar 

  3. Wang L, Li J, Liu Z (2009) Effects of lead and/or cadmium on the oxidative damage of rat kidney cortex mitochondria. Biol Trace Elem Res 137:69–78

    Article  PubMed  Google Scholar 

  4. Barbosa F Jr, Fillion M, Lemire M et al (2009) Elevated blood lead levels in a riverside population in the Brazilian Amazon. Environ Res 109:594–599

    Article  PubMed  CAS  Google Scholar 

  5. El-Nekeety AA, El-Kady AA, Soliman MS et al (2009) Protective effect of Aquilegia vulgaris (L.) against lead acetate-induced oxidative stress in rats. Food Chem Toxicol 47:2209–2215

    Article  PubMed  CAS  Google Scholar 

  6. Navarro-Moreno L, Quintanar-Escorza M, González S et al (2009) Effects of lead intoxication on intercellular junctions and biochemical alterations of the renal proximal tubule cells. Toxico in Vitro 23:1298–1304

    Article  CAS  Google Scholar 

  7. Mansouri MT, Cauli O (2009) Motor alterations induced by chronic lead exposure. Enviro Toxicol Pharmacol 27:307–313

    Article  CAS  Google Scholar 

  8. Bokara KK, Brown E, McCormick R et al (2008) Lead-induced increase in antioxidant enzymes and lipid peroxidation products in developing rat brain. Biometals 21:9–16

    Article  PubMed  CAS  Google Scholar 

  9. Patra R, Swarup D, Dwivedi S (2001) Antioxidant effects of α-tocopherol, ascorbic acid and l-methionine on lead induced oxidative stress to the liver, kidney and brain in rats. Toxicology 162:81–88

    Article  PubMed  CAS  Google Scholar 

  10. Ercal N, Neal R, Treeratphan P et al (2000) A role for oxidative stress in suppressing serum immunoglobulin levels in lead-exposed Fisher 344 rats. Arch Environ Contam Toxicol 39:251–256

    Article  PubMed  CAS  Google Scholar 

  11. Bolin CM, Basha R, Cox D et al (2006) Exposure to lead and the developmental origin of oxidative DNA damage in the aging brain. FASEB J 20:788–790

    PubMed  CAS  Google Scholar 

  12. Yin ST, Tang ML, Su L et al (2008) Effects of epigallocatechin-3-gallate on lead-induced oxidative damage. Toxicology 249:45–54

    Article  PubMed  CAS  Google Scholar 

  13. Newairy ASA, Abdou HM (2009) Protective role of flax lignans against lead acetate induced oxidative damage and hyperlipidemia in rats. Food Chem Toxicol 47:813–818

    Article  PubMed  CAS  Google Scholar 

  14. Mehana E, Meki M, Fazili K (2011) Ameliorated effects of green tea extract on lead induced liver toxicity in rats. Exp Toxicol Pathol. doi:10.1016/j.etp.2010.09.001

  15. Caylak E, Aytekin M, Halifeoglu I (2008) Antioxidant effects of methionine,[alpha]-lipoic acid, N-acetylcysteine and homocysteine on lead-induced oxidative stress to erythrocytes in rats. Exp Toxicol Pathol 60:289–294

    Article  PubMed  CAS  Google Scholar 

  16. Orsolic N, Gajski G, Garaj-Vrhovac V et al (2011) DNA-protective effects of quercetin or naringenin in alloxan-induced diabetic mice. Eur J Pharmacol 656:110–118

    Article  PubMed  CAS  Google Scholar 

  17. Bhathena SJ, Velasquez MT (2002) Beneficial role of dietary phytoestrogens in obesity and diabetes. Am Journal Clin Nutr 76:1191–1201

    CAS  Google Scholar 

  18. Renugadevi J, Prabu SM (2010) Cadmium-induced hepatotoxicity in rats and the protective effect of naringenin. Exp Toxicol Pathol 62:171–181

    Article  PubMed  CAS  Google Scholar 

  19. Du G, Jin L, Han X et al (2009) Naringenin: a potential immunomodulator for inhibiting lung fibrosis and metastasis. Cancer Res 69:3205–3212

    Article  PubMed  CAS  Google Scholar 

  20. Galati G, Moridani MY, Chan TS et al (2001) Peroxidative metabolism of apigenin and naringenin versus luteolin and quercetin: glutathione oxidation and conjugation. Free Radic Biol Med 30:370–382

    Article  PubMed  CAS  Google Scholar 

  21. Di Chen MSC, Cui QC, Yang H et al (2007) Structure-proteasome-inhibitory activity relationships of dietary flavonoids in human cancer cells. Front Biosci 12:1935–1945

    Article  PubMed  CAS  Google Scholar 

  22. Szejtli J, Szente L (2005) Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur J Pharm Biopharm 61:115–125

    Article  PubMed  CAS  Google Scholar 

  23. Fang F, Tang Y, Gao Z et al (2010) A novel regulatory mechanism of naringenin through inhibition of T lymphocyte function in contact hypersensitivity suppression. Biochem Biophys Res Commun 397:163–169

    Article  PubMed  CAS  Google Scholar 

  24. Devan S, Janardhanam VA. (2011) Naringenin, a flavanone alters the tumorigenic features of C6 glioma cells. Biomed Pharmacother. doi:10.1016/j.biopha.2010.06.010

  25. Kannappan S, Palanisamy N, Anuradha CV (2010) Suppression of hepatic oxidative events and regulation of eNOS expression in the liver by naringenin in fructose-administered rats. Eur J Pharmacol 645:177–184

    Article  PubMed  CAS  Google Scholar 

  26. Lee MH, Yoon S, Moon JO (2004) The flavonoid naringenin inhibits dimethylnitrosamine-induced liver damage in rats. Biol Pharm Bull 27:72–76

    Article  PubMed  CAS  Google Scholar 

  27. Badary OA, Abdel-Maksoud S, Ahmed WA et al (2005) Naringenin attenuates cisplatin nephrotoxicity in rats. Life Sci 76:2125–2135

    Article  PubMed  CAS  Google Scholar 

  28. Renugadevi J, Prabu SM (2009) Naringenin protects against cadmium-induced oxidative renal dysfunction in rats. Toxicology 256:128–134

    Article  PubMed  CAS  Google Scholar 

  29. Liu CM, Zheng YL, Lu J et al (2010) Quercetin protects rat liver against lead-induced oxidative stress and apoptosis. Environ Toxicol Pharmacol 29:158–166

    Article  PubMed  CAS  Google Scholar 

  30. Sivaprasad R, Nagaraj M, Varalakshmi P (2004) Combined efficacies of lipoic acid and 2, 3-dimercaptosuccinic acid against lead-induced lipid peroxidation in rat liver. J Nutr Biochem 15:18–23

    Article  PubMed  CAS  Google Scholar 

  31. Dasgupta S, Ghosh S, Das K (1996) Transaminase activities in some metabolically active tissues of nickel treated rats under protein restricted condition. India J Physiol Allied Sci 50:27–33

    CAS  Google Scholar 

  32. Mohamed M, Abdellatif M, Sabar A et al (2003) Sodium fluoride ion and renal function after prolonged sevoflurane or isoflurane anaesthesia. Eng J Ana 19:78–83

    Google Scholar 

  33. Hooper D, Spitsin S, Kean R et al (1998) Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci 95:675–680

    Article  PubMed  CAS  Google Scholar 

  34. Donadio C, Lucchesi A, Tramonti G et al (1997) Creatinine clearance predicted from body cell mass is a good indicator of renal function. Kidney Int Suppl 63:166–168

    Google Scholar 

  35. Ademuyiwa O, Agarwal R, Chandra R et al (2009) Lead-induced phospholipidosis and cholesterogenesis in rat tissues. Chem Biol Interact 179:314–320

    Article  PubMed  CAS  Google Scholar 

  36. Winterbourn CC (1993) Superoxide as an intracellular radical sink. Free Radic Biol Med 14:85–90

    Article  PubMed  CAS  Google Scholar 

  37. Maiti PK, Kar A, Gupta P et al (1995) Loss of membrane integrity and inhibition of type-I iodothyronine 5′-monodeiodinase activity by fenvalerate in female mouse. Biochem Biophys Res Commun 214:905–909

    Article  PubMed  CAS  Google Scholar 

  38. Abdel-Wahhab M, Aly S (2005) Antioxidant property of Nigella sativa (black cumin) and Syzygium aromaticum (clove) in rats during aflatoxicosis. J Appl Toxicol 25:218–223

    Article  PubMed  CAS  Google Scholar 

  39. Sivaprasad R, Nagaraj M, Varalakshmi P (2002) Lipoic acid in combination with a chelator ameliorates lead-induced peroxidative damages in rat kidney. Arch Toxicol 76:437–441

    Article  PubMed  CAS  Google Scholar 

  40. Upasani C, Khera A, Balaraman R (2001) Effect of lead with vitamin E, C, or Spirulina on malondialdehyde, conjugated dienes and hydroperoxides in rats. Indian J Exp Biol 39:70–74

    PubMed  CAS  Google Scholar 

  41. Hermes-Lima M, Pereira B, Bechara E (1991) Are free radicals involved in lead poisoning? Xenobiotica 21:1085–1090

    Article  PubMed  CAS  Google Scholar 

  42. Boots AW, Haenen GRMM, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585:325–337

    Article  PubMed  CAS  Google Scholar 

  43. Chance B, Greenstein DS, Roughton RJW (1952) The mechanism of catalase action 1—steady state analysis. Arch Biochem Biophys 37:301–339

    Article  PubMed  CAS  Google Scholar 

  44. Freeman BA, Crapo JD (1982) Biology of disease: free radicals and tissue injury. Lab Invest 47:412–426

    PubMed  CAS  Google Scholar 

  45. Mcgowan C, Donaldson W (1986) Changes in organ nonprotein sulfhydryl and glutathione concentrations during acute and chronic administration of inorganic lead to chicks. Biol Trace Elem Res 10:37–46

    Article  CAS  Google Scholar 

  46. Hsu PC, Guo YL (2002) Antioxidant nutrients and lead toxicity. Toxicology 180:33–44

    Article  PubMed  CAS  Google Scholar 

  47. Chiba M, Shinohara A, Matsushita K et al (1996) Indices of lead-exposure in blood and urine of lead-exposed workers and concentrations of major and trace elements and activities of SOD, GSH-Px and catalase in their blood. Tohoku J Exp Med 178:49–62

    Article  PubMed  CAS  Google Scholar 

  48. Hsu JM (1981) Lead toxicity as related to glutathione metabolism. J Nutr 111:26–33

    PubMed  CAS  Google Scholar 

  49. Gelman BB, Michaelson IA, Bus JS (1978) The effect of lead on oxidative hemolysis and erythrocyte defense mechanisms in the rat. Toxicol Appl Pharmacol 45:119–129

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Research Fund for Doctor of Henan University of Science and Technology (09001489).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuezhong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Yang, Z., Lin, L. et al. Protective Effect of Naringenin Against Lead-Induced Oxidative Stress in Rats. Biol Trace Elem Res 146, 354–359 (2012). https://doi.org/10.1007/s12011-011-9268-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9268-6

Keywords

Navigation