Skip to main content

Advertisement

Log in

Analysis of Blood Trace Elements and Biochemical Indexes Levels in Severe Craniocerebral Trauma Adults with Glasgow Coma Scale and Injury Severity Score

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We aimed to investigate the correlation between the Glasgow Coma Scale (GCS), the injury severity score (ISS) and serum levels of trace elements (TE) in severe trauma patients to analyze alteration of the levels of trace elements and serum biochemical indexes in the period of admission from 126 adult cases of severe brain trauma with traffic accidents. Multi-trace elements for patients in the trauma-TE groups were used. The results indicated that all patients presented an acute trace elements deficiency syndrome (ATEDs) after severe trauma, and the correlation between ISS and serum levels of Fe, Zn, and Mg was significant. Compared to the normal control group, levels of the trace elements in serum were significantly decreased after trauma, suggesting that enhancement of immunity to infection and multiple organ failure (MOF) via the monitoring and supplement of trace elements will be a good strategy to severe traumatic patients in clinics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang G, Feng X, Yu X et al (2013) Prognostic value of blood zinc, iron, and copper levels in critically ill children with pediatric risk of mortality score III. Biol Trace Elem Res 152:300–304

    Article  CAS  PubMed  Google Scholar 

  2. Wang G, Lai X, Yu X et al (2012) Altered levels of trace elements in acute lung injury after severe trauma. Biol Trace Elem Res 147:28–35

    Article  CAS  PubMed  Google Scholar 

  3. Wang BH, Yu XJ, Wang D et al (2007) Alterations of trace elements (Zn, Se, Cu, Fe) and related metalloenzymes in rabbit blood after severe trauma. J Trace Elem Med Biol 21:102–107

    Article  CAS  PubMed  Google Scholar 

  4. Yuan WA, Yu XJ, Liu FQ et al (2010) Effects of trace element supplementation on the inflammatory response in a rabbit model of major trauma. J Trace Elem Med Biol 24:36–41

    Article  CAS  PubMed  Google Scholar 

  5. Kalkan Ucar S, Coker M, Sözmen E et al (2010) An association among iron, copper, zinc, and selenium, and antioxidative status in dyslipidemic pediatric patients with glycogen storage disease types IA and III. J Trace Elem Med Biol 24:42–45

    Article  PubMed  Google Scholar 

  6. Agay D, Anderson RA, Sandre C et al (2005) Alterations of antioxidant trace elements (Zn, Se, Cu) and related metallo-enzymes in plasma and tissues following burn injury in rats. Burns 31:366–371

    Article  CAS  PubMed  Google Scholar 

  7. Kennedy AB, Vowles JV, d’Espaux L et al (2014) Protein-responsive ribozyme switches in eukaryotic cells. Nucleic Acids Res 42:12306–12321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Decker H, Terwilliger N (2000) Cops and robbers: putative evolution of copper oxygen-binding proteins. J Exp Biol 203:1777–1782

    CAS  PubMed  Google Scholar 

  9. Saaka M, Oosthuizen J, Beatty S (2009) Effect of joint iron and zinc supplementation on malarial infection and anaemia. East Afr J Public Health 6:55–62

    PubMed  Google Scholar 

  10. Liu Q, Lu JY, Wang XH et al (2014) Changes in the PD-1 and PD-L1 expressions of splenic dendritic cells in multiple-organ dysfunction syndrome mice and their significance. Genet Mol Res 13:7666–7672

    Article  CAS  PubMed  Google Scholar 

  11. Wang D, Yu XJ, Qi XM et al (2006) Study of correlation between the acute changes of trace element and occurrence of multiple organ dysfunction syndrom and death after severe trauma. J Surgery Concepts Practice 11:239–243 (in Chinese)

    Google Scholar 

  12. Georgetti FC, Eugênio Gde R (2006) Activated C protein in the treatment of a newborn with sepsis, shock and multiple organ dysfunction systems: case report and literature review. Rev Bras Ter Intensiva 18:418–422 (in Portuguese)

    Article  PubMed  Google Scholar 

  13. Baker SP, O’Neill B, Haddon W Jr et al (1974) The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma 14:187–196

    Article  CAS  PubMed  Google Scholar 

  14. TraumaRegister DGU(®) (2014) 20 years of trauma documentation in Germany—actual trends and developments. Injury 45:S14–S19

    Google Scholar 

  15. Palmer CS, Lang J, Russell G et al (2013) Mapping abbreviated injury scale data from 1990 to 1998 versions: a stepping-stone in the contemporary evaluation of trauma. Injury 44:1437–1442

    Article  PubMed  Google Scholar 

  16. Smith ZA, Dahdaleh NS (2014) Validating the thoracolumbar injury classification and severity score. J Neurosurg Spine 21:495–496

    Article  PubMed  Google Scholar 

  17. Iankova A (2006) The Glasgow Coma Scale: clinical application in emergency departments. Emerg Nurse 14:30–35

    Article  PubMed  Google Scholar 

  18. Kehoe A, Rennie S, Smith JE (2014) Glasgow Coma Scale is unreliable for the prediction of severe head injury in elderly trauma patients. Emerg Med J

  19. Bonham M, O’Connor JM, Hannigan BM et al (2002) The immune system as a physiological indicator of marginal copper status? Br J Nutr 87:393–403

    Article  CAS  PubMed  Google Scholar 

  20. Strachan S (2010) Trace elements. Curr Anaesth Crit Care 21:44–48

    Article  Google Scholar 

  21. Dlouhy AC, Outten CE (2013) The iron metallome in eukaryotic organisms. Met Ions Life Sci 12:241–278

    Article  PubMed Central  PubMed  Google Scholar 

  22. Hoppe M, Hulthén L, Hallberg L (2006) The relative bioavailability in humans of elemental iron powders for use in food fortification. Eur J Nutr 45:37–44

    Article  CAS  PubMed  Google Scholar 

  23. Pineda O, Ashmead HD (2001) Effectiveness of treatment of iron-deficiency anemia in infants and young children with ferrous bis-glycinate chelate. Nutrition 17:381–384

    Article  CAS  PubMed  Google Scholar 

  24. Eide DJ (2011) The oxidative stress of zinc deficiency. Metallomics 3:1124–1129

    Article  CAS  PubMed  Google Scholar 

  25. Cortese-Krott MM, Kulakov L, Opländer C et al (2014) Zinc regulates iNOS-derived nitric oxide formation in endothelial cells. Redox Biol 2:945–954

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Jang JY, Shim H, Lee SH et al (2014) Serum selenium and zinc levels in critically ill surgical patients. J Crit Care 29(317):e5–e8

    PubMed  Google Scholar 

  27. Blass SC, Goost H, Burger C et al (2013) Extracellular micronutrient levels and pro-/antioxidant status in trauma patients with wound healing disorders: results of a cross-sectional study. Nutr J 12:157

    Article  PubMed Central  PubMed  Google Scholar 

  28. Thurnham DI (2014) Interactions between nutrition and immune function: using inflammation biomarkers to interpret micronutrient status. Proc Nutr Soc 73:1–8

    Article  CAS  PubMed  Google Scholar 

  29. Morris DR, Levenson CW (2013) Zinc in traumatic brain injury: from neuroprotection to neurotoxicity. Curr Opin Clin Nutr Metab Care 16:708–711

    Article  CAS  PubMed  Google Scholar 

  30. Romani AM (2013) Magnesium in health and disease. Met Ions Life Sci 13:49–79

    Article  PubMed  Google Scholar 

  31. Guerrero-Romero F, Rodríguez-Morán M (2002) Low serum magnesium levels and metabolic syndrome. Acta Diabetol 39:209–213

    Article  CAS  PubMed  Google Scholar 

  32. Ghasemi A, Zahediasl S, Syedmoradi L et al (2010) Low serum magnesium levels in elderly subjects with metabolic syndrome. Biol Trace Elem Res 136:18–25

    Article  CAS  PubMed  Google Scholar 

  33. Geiger H, Wanner C (2012) Magnesium in disease. Clin Kidney J 5:i25–i38

    Article  CAS  Google Scholar 

  34. Panhwar AH, Kazi TG, Afridi HI et al (2014) Distribution of potassium, calcium, magnesium, and sodium levels in biological samples of Pakistani hypertensive patients and control subjects. Clin Lab 60:463–474

    CAS  PubMed  Google Scholar 

  35. Ge K, McNutt K (2000) How the Chinese link dietary advice to their national plan of action for nutrition. J Am Diet Assoc 100:885–886

    Article  CAS  PubMed  Google Scholar 

  36. Morgan DB, Carver ME, Payne RB (1977) Plasma creatinine and urea: creatinine ratio in patients with raised plasma urea. Br Med J 2:929–932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Huang X, Li S, Yang X et al (2014) Establishing reference values for blood urea nitrogen and serum creatinine in Chinese Han ethnic adult men. Clin Lab 60:1123–1128

    CAS  PubMed  Google Scholar 

  38. Riccardi A, Chiarbonello B, Minuto P et al (2013) Identification of the hydration state in emergency patients: correlation between caval index and BUN/creatinine ratio. Eur Rev Med Pharmacol Sci 17:1800–1803

    CAS  PubMed  Google Scholar 

  39. Liu X, Zhang H, Liang J (2013) Blood urea nitrogen is elevated in patients with non-alcoholic fatty liver disease. Hepatogastroenterology 60:343–345

    CAS  PubMed  Google Scholar 

  40. Brisco MA, Coca SG, Chen J et al (2013) Blood urea nitrogen/creatinine ratio identifies a high-risk but potentially reversible form of renal dysfunction in patients with decompensated heart failure. Circ Heart Fail 6:233–239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Schrock JW, Glasenapp M, Drogell K (2012) Elevated blood urea nitrogen/creatinine ratio is associated with poor outcome in patients with ischemic stroke. Clin Neurol Neurosurg 114:881–884

    Article  PubMed  Google Scholar 

  42. Wang BH, Yu XJ, Liu MY et al (2005) Analysis of cause of death for the severe trauma: 66 cases report and review of the literature. J Forensic Med 21:42–44 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

We are grateful to Miss Xingxing Wang and Mr. Bo Li for the data analysis. We appreciate the support from the Zhejiang Provincial Natural Science Foundation (LQ14H230001), Scientific Research Fund of Zhejiang Provincial Education Department (Y201330031), and the National Natural Science Foundation Council of China (30772458, 81400489, and 81400654).

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojun Yu or Jiang Gu.

Additional information

Guangtao Xu and Bo Hu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Hu, B., Chen, G. et al. Analysis of Blood Trace Elements and Biochemical Indexes Levels in Severe Craniocerebral Trauma Adults with Glasgow Coma Scale and Injury Severity Score. Biol Trace Elem Res 164, 192–197 (2015). https://doi.org/10.1007/s12011-014-0225-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0225-z

Keywords

Navigation