Skip to main content

Advertisement

Log in

Zinc Content in Cord Blood Is Associated with Maternal Age and Parity

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

At childbirth (parturition), zinc (Zn) homeostasis in cord blood (CB) can be affected by a number of factors: Zn in maternal blood, parturition related stress as well as metallothionein (MT). Both Zn and stress are known inducers of MT which is primarily involved in Zn homeostasis. This study analyzed Zn concentration [Zn], in CB components and MT-2A transcription in CB mononuclear cells (MNC) in relation to primiparous and multiparous childbirth. [Zn] in CB (n = 47) plasma, erythrocytes, and MNCs were measured by atomic absorption spectrophotometry (λ = 213.9 nm). The MT-2A transcription in CB-MNC was quantified using real-time PCR. Significant correlations (Pearson r) were found between: plasma-[Zn] and erythrocyte-[Zn] (p = 0.002); [Zn] and MT-2A messenger RNA (mRNA) (p = 0.000) in CB-MNC. Student’s t tests showed higher levels of MT-2A mRNA and MNC-[Zn] in CB of older (≥25 years) compared to younger mothers (≤24 years) (p = 0.043 and p = 0.016, respectively). Significantly higher [Zn] was found in CB plasma (p = 0.017) and MNC (p = 0.041) of older primiparous compared to the younger primiparous and older multiparous mothers respectively. MT-2A mRNA in CB-MNC was significantly lower in CB of younger primiparous mothers compared to their older counterparts (p = 0.001). Path analysis showed that MNC-[Zn] (β = 0.83; p = 0.000) had a greater influence on MT-2A mRNA expression, compared to parity (β = −0.14; p = 0.033). Higher [Zn] in CB of primiparous mothers could be linked to higher stress during parturition, however, might be beneficial for the growth and development of the child. Together MNC-[Zn] and parity contributed ~70 % of the MT-2A transcription in CB-MNC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6

Similar content being viewed by others

Abbreviations

CB:

Cord blood

CAT:

Catecholamines

MB:

Maternal blood

MNC:

Mononuclear cells

MT:

Metallothionein

[Zn]:

Zinc concentration

References

  1. Kambe T, Weaver BP, Andrews GK (2008) The genetics of essential metal homeostasis during development. Genesis 46:214–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rink L, Haase H (2007) Zinc homeostasis and immunity. Trends Immunol 28:1–4

    Article  CAS  PubMed  Google Scholar 

  3. Upadhyaya C, Mishra S, Ajmera P, Sharma P (2004) Serum iron, copper and zinc status in maternal and cord blood. Indian J Clin Biochem 19(2):48–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jariwala M, Suvarna S, Kiran Kumar G, Amin A, Udas AC (2014) Study of the concentration of trace elements Fe, Zn, Cu, Se and their correlation in maternal serum, cord serum and colostrums. Indian J Clin Biochem 29:181–188

    Article  CAS  PubMed  Google Scholar 

  5. Brady FO, Helvig B (1984) Effect of epinephrine and norepinephrine on zinc thionein levels and induction in rat liver. Am J Phys 247(3 Pt 1):E318–E322

    CAS  Google Scholar 

  6. Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: the multipurpose protein. Cell Mol Life Sci 59:627–647

    Article  CAS  PubMed  Google Scholar 

  7. Haase H, Mazzatti DJ, White A, Ibs KH, Engelhardt G, Hebel S, Powell JR, Rink L (2007) Differential gene expression after zinc supplementation and deprivation in human leukocyte subsets. Mol Med 13:362–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kundu N, Parke P, Palmer IS, Olson O, Petersen LP (1985) Distribution of serum selenium, copper, and zinc in normal human pregnancy. Arch Environ Health 40(5):268–273

    Article  CAS  PubMed  Google Scholar 

  9. Krachler M, Rossipal E, Micetic-Turk D (1999) Trace element transfer from the mother to the newborn-investigations on triplets of colostrum, maternal and umbilical cord sera. Eur J Clin Nutr 53:486–494

    Article  CAS  PubMed  Google Scholar 

  10. Donangelo CM, King JC (2012) Maternal zinc intakes and homeostatic adjustments during pregnancy and lactation. Nutrients 4(7):782–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Costa A, DeFilippis V, Voglino M, et al. (1988) Adrenocorticotropic hormone and catecholamines in maternal, umbilical and neonatal plasma in relation to vaginal delivery. J Endocrinol Investig 11:703–709

    Article  CAS  Google Scholar 

  12. Lowe NK (1987) Parity and pain during parturition. J Obstet Gynecol Neonatal Nurs 16:340–346

    Article  CAS  PubMed  Google Scholar 

  13. Challis J, Matthews S, Gibb W, Lye S (2000) Endocrine and paracrine regulation of birth at term and preterm. Endocr Rev 21(5):514–550

    CAS  PubMed  Google Scholar 

  14. Vahratian A, Hoffman MK, Troendle JF, Zhang J (2006) The impact of parity on course of labor in a contemporary population. Birth 33:12–17

    Article  PubMed  Google Scholar 

  15. Wang JX, Zhang W (2009) The influence of mode of delivery on the level of catecholamines in umbilical cord blood of neonates. Chin Med J 89:1340–1342

    CAS  Google Scholar 

  16. Imamura T, Sato M, Hashimoto K, Ishii T, Goto A, Go H, Kawarada T, Kawasaki Y, Momoi N, Ujiie N, Fujimori K, Hosoya M (2011) Glucocorticoid receptor expression and cortisol level in cord blood of term infants. J Matern Fetal Neonatal Med 24:1312–1316

    Article  CAS  PubMed  Google Scholar 

  17. Shahbaz AU, Zhao T, Zhao W, Johnson PL, Ahokas RA, Bhattacharya SK, Sun Y, Gerling IC, Weber KT (2011) Calcium and zinc dyshomeostasis during isoproterenol-induced acute stressor state. Am J Physiol Heart Circ Physiol 300(2):H636–H644

    Article  CAS  PubMed  Google Scholar 

  18. Cousins RJ (1989) Systemic transport of Zn. In: Mills CF (ed) Zinc in human biology. Springer Science & Business Media, London, pp. 79–93

    Chapter  Google Scholar 

  19. Stefanidou M, Maravelias C, Dona A, Spiliopoulou C (2006) Zinc: a multipurpose trace element. Arch Toxicol 80:1–9

    Article  CAS  PubMed  Google Scholar 

  20. Hidalgo J, Garvey JS, Armario A (1987) The role of catecholamines and glucagon on serum and liver metallothionein response to restraint stress. Rev Esp Fisiol 43:433–437

    CAS  PubMed  Google Scholar 

  21. Hulley SB, Cummings SR, Browner WS, Grady D, Newman TB (2013) Designing clinical research: an epidemiologic approach, 4th edn. Lippincott Williams & Wilkins, Philadelphia, p. 79

    Google Scholar 

  22. Bøyum A (1984) Separation of lymphocytes granulocytes and monocytes from human blood using iodinated density gradient media. Methods Enzymol 108:88–102

    Article  PubMed  Google Scholar 

  23. Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty something years on. Nat Protoc 1:581–585

    Article  CAS  PubMed  Google Scholar 

  24. Garrett SH, Somji S, Todd JH, Sens DA (1998) Exposure of human proximal tubule cells to Cd2+, Zn2+ and Cu2+ induces metallothionein protein accumulation but not metallothionein isoform 2 mRNA. Environ Health Perspect 106:587–595

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  26. Aguinis H, Harden EE (2009) Sample size rules of thumb: evaluating three common practices. In: Lance CE, Vandenberg RJ (eds) Statistical and methodological myths and urban legends: doctrine, verity and fable in the organizational and social sciences. Taylor & Francis, New York, pp. 267–287

    Google Scholar 

  27. Frković A, Medugorac B, Alebić-Juretić A (1996) Zinc levels in human milk and umbilical cord blood. Sci Total Environ 192:207–212

    Article  PubMed  Google Scholar 

  28. Mariott LD, Foote KD, Kimber AC, Delves HT, Morgan JB (2007) Zinc, copper, selenium and manganese blood levels in preterm infants. Arch Dis Child Fetal Neonatal Ed 92:F494–F497

    Article  Google Scholar 

  29. Aldous MB, Edmonson MB (1993) Maternal age at first childbirth and risk of low birth weight and preterm delivery in Washington state. J Am Med Assoc 270:2574–2577

    Article  CAS  Google Scholar 

  30. Gibbs CM, Wendt A, Peters S, Hogue CJ (2012) The impact of early age at first childbirth on maternal and infant health. Paediatr Perinat Epidemiol 26:259–284

    Article  PubMed  PubMed Central  Google Scholar 

  31. The world fact book (2014) Mother’s mean age at first birth. https://www.cia.gov/library/publications/the-world-factbook/fields/2256.html. Accessed 15 July 2015

  32. Ryu MS, Lichten LA, Liuzzi JP, Cousins RJ (2008) Zinc transporters ZnT1 (Slc30a1), Zip8 (Slc39a8), and Zip10 (Slc39a10) in mouse red blood cells are differentially regulated during erythroid development and by dietary zinc deficiency. J Nutr 138:2076–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moser PB, Reynolds RD (1983) Dietary zinc intake and zinc concentrations of plasma, erythrocytes, and breast milk in antepartum and postpartum lactating and nonlactating women: a longitudinal study. Am J Clin Nutr 38:101–108

    CAS  PubMed  Google Scholar 

  34. Qvist I, Abdulla M, Jagerstad M, Svensson S (1986) Iron, zinc, and folate status during pregnancy and two months after delivery. Acta Obstet Gynecol Scand 65:15–22

    Article  CAS  PubMed  Google Scholar 

  35. Fung EB, Ritchie LD, Woodhouse LR, Roehl R, King JC (1997) Zinc absorption in women during pregnancy and lactation: a longitudinal study. Am J Clin Nutr 66:80–88

    CAS  PubMed  Google Scholar 

  36. Lao TTH, Chin RKH, Mak YT, Swaminathan R (1988) Changes in erythrocyte and plasma zinc concentrations in pregnancy. Gynecol Obstet Investig 25:213–216

    Article  CAS  Google Scholar 

  37. Overbeck S, Uciechowski P, Ackland ML, Ford D, Rink L (2008) Intracellular zinc homeostasis in leukocyte subsets is regulated by different expression of zinc exporters ZnT-1 to ZnT-9. J Leukoc Biol 83:368–380

    Article  CAS  PubMed  Google Scholar 

  38. King JC (2000) Determinants of maternal zinc status during pregnancy. Am J Clin Nutr 71:133–143

    Google Scholar 

  39. Kuhnert BR, Kuhnert PM, Zarlingo TJ (1988) Associations between placental cadmium and zinc and age and parity in pregnant women who smoke. Obstet Gynecol 71(1):67–70

    CAS  PubMed  Google Scholar 

  40. Hess SY, King JC (2009) Effects of maternal zinc supplementation on pregnancy and lactation outcomes. Food Nutr Bull 30(1 Suppl):S60–S78

    Article  PubMed  Google Scholar 

  41. Sandström B (1997) Bioavailability of zinc. Eur J Clin Nutr 51(Suppl 1):S17–S19

    PubMed  Google Scholar 

  42. Samman S, Roberts DC (1987) The effect of zinc supplements on plasma zinc and copper levels and the reported symptoms in healthy volunteers. Med J Aust 146(5):246–249

    CAS  PubMed  Google Scholar 

  43. Swanson CA, King JC (1987) Zinc and pregnancy outcome. Am J Clin Nutr 46(5):763–771

    CAS  PubMed  Google Scholar 

  44. Kelleher SL, Lönnerdal B (2005) Molecular regulation of milk trace mineral homeostasis. Mol Asp Med 26(4–5):328–339

    Article  CAS  Google Scholar 

  45. Cousins RJ (1994) Metal elements and gene expression. Annu Rev Nutr 14:449–469

    Article  CAS  PubMed  Google Scholar 

  46. Greenberg MB, Cheng YW, Sullivan M, Norton ME, Hopkins LM, Caughey AB (2007) Does length of labor vary by maternal age? Am J Obstet Gynecol 197:428.e1-7

    PubMed  Google Scholar 

  47. Cano-Gauci DF, Sarkar B (1996) Reversible zinc exchange between metallothionein and the estrogen receptor zinc finger. FEBS Lett 386(1):1–4

    Article  CAS  PubMed  Google Scholar 

  48. Finnin MS, Donigian JR, Pavletich NP (2001) Structure of the histone deacetylase SIRT2. Nat Struct Biol 8(7):621–625

    Article  CAS  PubMed  Google Scholar 

  49. Zhou Q, Atadja P, Davidson NE (2007) Histone deacetylase inhibitor LBH589 reactivates silenced estrogen receptor alpha (ER) gene expression without loss of DNA hypermethylation. Cancer Biol Ther 6(1):64–69

    Article  CAS  PubMed  Google Scholar 

  50. Murakami G, Hunter RG, Fontaine C, Ribeiro A, Pfaff D (2011) Relationships among estrogen receptor, oxytocin and vasopressin gene expression and social interaction in male mice. Eur J Neurosci 34(3):469–477

    Article  CAS  PubMed  Google Scholar 

  51. Arrowsmith S, Robinson H, Noble K, Wray S (2012) What do we know about what happens to myometrial function as women age? J Muscle Res Cell Motil 33:209–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Malavolta M, Cipriano C, Costarelli L, Giacconi R, Tesei S, Muti E, Piacenza F, Pierpaoli S, Larbi A, Pawelec G, Dedoussis G, Herbein G, Monti D, Jajte J, Rink L, Mocchegiani E (2008) Metallothionein down regulation in very old age: a phenomenon associated with cellular senescence? Rejuvenation Res 11:455–459

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge Marzouq Abedur Rahman for language editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Noor Lide Abu Kassim or Mohammad Tariqur Rahman.

Ethics declarations

Sources of Funding

This research was supported by the grant of Basic and Applied Biomedical Research Cluster unit (RCG-22-05).

Disclosures

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youssof, A.L., Kassim, N.L.A., Rashid, S.A. et al. Zinc Content in Cord Blood Is Associated with Maternal Age and Parity. Biol Trace Elem Res 175, 17–26 (2017). https://doi.org/10.1007/s12011-016-0760-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0760-x

Keywords

Navigation