Skip to main content

Advertisement

Log in

Cardiotoxic Effects of Micrurus surinamensis (Cuvier, 1817) Snake Venom

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Micrurus surinamensis is a coral snake from the Elapidae family of wide distribution in Amazonia Forest. Its venom contains neurotoxins that induce muscular and respiratory paralysis; however, its cardiovascular action is not yet characterized. The aim of this study was to investigate the cardiotoxic effects caused by M. surinamensis poisoning in rodents. Twelve guinea pigs (Cavia porcellus) were distributed in two groups (n = 6) named as control and envenomed. The control group received 0.2 ml of PBS/BSA via intramuscular injection (IM), while envenomed animals received 0.75 µg of venom per g of body weight, also via IM. Electrocardiographic examination (ECG) and biochemical serum tests were conducted before and 2 h after inoculation. ECG of the envenomed animals revealed severe progressive arrhythmias including atrioventricular block, supraventricular, and ventricular extrasystoles. Serum biochemistry showed significant increase in CK, CK-MB, and LDH enzymes corroborating the skeletal and cardiac muscle damage. Myonecrosis and degeneration were observed in both skeletal and heart muscle; nevertheless, transmission electron microscopy revealed cardiac muscle fibers fragmentation. In conclusion, M. surinamensis venom has a potent cardiotoxic activity eliciting arrhythmogenic effects and heart damage after only 2 h of envenomation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kasturiratne, A., Wickremasinghe, A. R., de Silva, N., et al. (2008). The global burden of snakebite: A literature analysis and modelling based on regional estimates of envenoming and deaths. PloS Medicine, 5(11), e218.

    Article  Google Scholar 

  2. Di-Bernardo, M., Borges-Martins, M., & Silva, N. J., Jr. (2007). A new species of coralsnake (Micrurus: Elapidae) from southern Brazil. Zootaxa, 1447, 1–26.

    Article  Google Scholar 

  3. Roze, J. A. (1996). Coral snakes of the Americas: Biology, identification and venoms. Malabar, FL: Krieger Publishing Co.

    Google Scholar 

  4. Bucaretchi, F., Capitani, E. M., Vieira, R. J., et al. (2016). Coral snake bites (Micrurus spp.) in Brazil: A review of literature reports. Clinical Toxicology, 54, 222–234.

    Article  Google Scholar 

  5. Olamendi-Portugal, T., Batista, C. V. F., Pedraza-Escalona, M., et al. (2018). New insights into the proteomic characterization of the coral snake Micrurus pyrrhocryptus venom. Toxicon, 153, 23–31.

    Article  CAS  Google Scholar 

  6. Lomonte, B., Rey-Suárez, P., Fernández, J., et al. (2016). Venoms of Micrurus coral snakes: Evolutionary trends in compositional patterns emerging from proteomic analyses. Toxicon, 122, 7–25.

    Article  CAS  Google Scholar 

  7. Brazil, O. V. (1987). Coral snake venoms: Mode of action and pathophysiology of experimental envenomation. Revista do Instituto de Medicina Tropical de São Paulo, 29, 119–126.

    Article  Google Scholar 

  8. Moreira, K. G., Prate, M. V., Andrade, F. A. C., et al. (2010). Frontoxins, three-finger toxins from Micrurus frontalis venom, decrease miniature endplate potential amplitude at frog neuromuscular junction. Toxicon, 56, 55–63.

    Article  CAS  Google Scholar 

  9. Floriano, R. S., Torres-Bonilla, K. A., Rojas-Moscoso, J. A., et al. (2020). Cardiovascular activity of Micrurus lemniscatus (South American coralsnake) venom. Toxicon, 30(186), 58–66.

    Article  Google Scholar 

  10. De Roodt, A. R., Lago, N. R., Stock, R. P., et al. (2012). Myotoxicity and nephrotoxicity by Micrurus venoms in experimental envenomation. Toxicon, 59, 356–364.

    Article  Google Scholar 

  11. Botelho, A. F. M., Oliveira, M. S., Soto-Blanco, B., et al. (2016). Computerized electrocardiography in healthy conscious guinea pigs (Cavia porcellus). Pesquisa Veterinária Brasileira, 36, 10–31.

    Google Scholar 

  12. Sanz, L., de Freitas-Lima, L. N., Quesada-Bernat, S., et al. (2019). Comparative venomics of Brazilian coral snakes: Micrurus frontalis, Micrurus spixii spixii, and Micrurus surinamensis. Toxicon, 166, 39–45.

    Article  CAS  Google Scholar 

  13. Bucaretchi, F. S., Hysplo, S., Vieira, R. J., et al. (2006). Bites by coral snakes (Micrurus spp.) in Campinas, State of São Paulo, southeastern Brazil. Revista do Instituto de Medicina Tropical de São Paulo, 48, 141–145.

    Article  Google Scholar 

  14. Manock, S. R., German, S., Graham, D., et al. (2008). Neurotoxic envenoming by South American coral snake (Micrurus lemniscatus helleri): Case report from eastern Ecuador and review. Transactions of the Royal Society of Tropical Medicine & Hygiene, 102, 1127–1132.

    Article  Google Scholar 

  15. Ramsey, H. W., Snyder, G. K., & Taylor, W. J. (1971). The effect of Micrurus fulvius fulvius (coral) venom on myocardial contractility of the isolated perfused rat heart. Clinical Research, 19, 66.

    Google Scholar 

  16. Ramsey, H. W., Taylor, W. J., Boruchow, G. K., et al. (1971). Mechanism of shock produced by an elapid snake (Micrurus fulvius fulvius) venom in dogs. American Journal of Physiology, 222, 782–786.

    Article  Google Scholar 

  17. Weiss, R. J. (1971). Cardiovascular and muscular effects of venom from coral snake Micrurus fulvius. Toxicon, 9, 219–228.

    Article  Google Scholar 

  18. Francis, B. R., Silva, N. J., Jr., & Kaiser, I. (1998). A new type of toxic snake venom phospholipase A2 which promotes hypotension and hemorrhage in mice. In G. S. Bailey (Ed.), Enzymes from snake venoms (Vol. 1, pp. 481–502). Fort Collins: Alaken Inc.

    Google Scholar 

  19. Gasanov, S. E., Shrivastava, I. H., Israilov, F. S., et al. (2015). Naja naja oxiana cobra venom cytotoxins CTI and CTII disrupt mitochondrial membrane integrity: Implications for basic three-fingered cytotoxins. PLoS ONE, 10, 28.

    Google Scholar 

  20. Katirji, B., & Al-Jaberi, M. M. (2001). Creatine kinase revisited. Journal of Clinical Neuromuscular Disease, 2, 158.

    Article  Google Scholar 

  21. Gutiérrez, J. M., Lomonte, B., Portilla, E., et al. (1983). Local effects induced by coral snake venoms: Evidence of myonecrosis after experimental inoculations of venoms from five species. Toxicon, 21, 777–783.

    Article  Google Scholar 

  22. Schezaro-Ramos, R., Floriano, R. S., Pereira, B. B. (2016). Comparative neurotoxicity and cytotoxicity of some Brazilian coralsnake venoms. Anais: Internacional Symposium on coralsnakes. Ed. Espaço Acadêmico, Goiás.

  23. Baker, D. C. In: Thrall, M. A., Weiser, G., Allison, R.W., et al. (2012). Veterinary hematology and clinical chemistry (2nd ed., pp. 185-204). Philadelphia: Lippincott Williams & Wilkins.

  24. Barros, A. C. S., Fernandes, D. P., Ferreira, L. C. L., et al. (1994). Local effects induced by venoms from five species of genus Micrurus spp. (coral snakes). Toxicon, 32, 445–452.

    Article  CAS  Google Scholar 

  25. Arce-Bejarano, R., Lomonte, B., & Gutiérrez, J. M. (2014). Intravascular hemolysis induced by the venom of the Eastern coral snake, Micrurus fulvius, in a mouse model: Identification of directly hemolytic phospholipases A2. Toxicon, 90, 26–35.

    Article  CAS  Google Scholar 

  26. Silva, J. R. N., Bucaretchi, F. (2003). Mecanismo de ação do veneno elapídico e aspectos clínicos dos acidentes. In J. L. C. Cardoso, F. O. S. França, F. H. Wen, C. M. S. Málaque, Haddad, Jr. (Eds.), Animais Peçonhentos no Brasil. Biologia, Clínica e Terapêutica dos Acidentes. Sarvier & FAPESP, São Paulo, 99–107.

  27. Duarte, R. C. F., Rios, D. R. A., Leite, P. M., et al. (2019). Thrombin generation test for evaluating hemostatic effects of Brazilian snake venoms. Toxicon, 163, 36–43.

    Article  CAS  Google Scholar 

  28. Oliveira, F. R., Noronha, M. D. N., & Lozano, J. L. (2017). Biological and molecular properties of yellow venom of the Amazonian coral snake Micrurus surinamensis. Revista da Sociedade Brasileira de Medicina Tropical, 50, 365–373.

    Article  Google Scholar 

  29. Weiss, J. N., Qu, Z., & Shivkumar, K. (2017). Electrophysiology of hypokalemia and hyperkalemia. Circulation: Arrhythmia and Electrophysiology, 10(3), e004667.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ana Flávia Machado Botelho or Marília Martins Melo.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Ethical Approval

All experimental animals were used in accordance with experimentation ethics, respecting animal welfare and minimizing any discomfort. The present study was approved by the Ethics Committee of Animal Use (CEUA) of the Universidade Federal Minas Gerais, protocol nº 192/2016.

Additional information

Handling Editor: Travis Knuckles

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reis, L.P.G., Botelho, A.F.M., Novais, C.R. et al. Cardiotoxic Effects of Micrurus surinamensis (Cuvier, 1817) Snake Venom. Cardiovasc Toxicol 21, 462–471 (2021). https://doi.org/10.1007/s12012-021-09640-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09640-7

Keywords

Navigation