Skip to main content

Advertisement

Log in

Antioxidant and Anticancer Properties and Mechanisms of Inorganic Selenium, Oxo-Sulfur, and Oxo-Selenium Compounds

  • REVIEW
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Inorganic selenium and oxo-sulfur compounds are widely available in dietary supplements and have been extensively studied for their antioxidant and anticancer properties. Although many in vivo and clinical trials have been conducted using these compounds, their biochemical and chemical mechanisms of efficacy are the focus of much current research. This review discusses the ability of inorganic selenium compounds, such as selenite, and selenate, to prevent damage from reactive oxygen species as well as their ability to promote cell death by reactive oxygen species generation. Oxo-sulfur and selenium compounds, such as allicin, dimethyl sulfone, methionine sulfoxide, and methylselenenic acid also have similar abilities to act as both antioxidants and pro-oxidants, but the mechanisms for these behaviors are distinctly different from those of the inorganic selenium compounds. The antioxidant and pro-oxidant properties of these small-molecule sulfur and selenium compounds are extremely complex and often greatly depend on experimental conditions, which may explain contradictory literature reports of their efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACSO:

Alliin, S-allyl-L-cysteine sulfoxide

AGE:

Aged garlic extracts

AIDS:

Acquired immune deficiency syndrome

ARC:

AIDS-related complex

[Cu(bipy)2]+ :

Copper (I) bypyridine

DMSO:

Dimethyl sulfoxide

DNA:

Deoxyribonucleic acid

[Fe(EDTA)]2− :

Iron(II) ethylenediaminetetraacetic acid

FMO:

Flavin-containing monooxygenase

GPx:

Glutathione peroxidase

GSH:

Glutathione

GSSeSG:

Selenoglutathione

GSSe :

Selenopersulfide anion

GSSH:

Glutathione disulfide

H2O2 :

Hydrogen peroxide

H2Se:

Hydrogen selenide

HDL:

High density lipoprotein

HIV:

Human immunodeficiency virus

HSC-3:

Human oral squamous carcinoma cells

IC50 :

Concentration required for 50% inhibition of biological activity

LDL:

Low-density lipoprotein

MeCysSO; MCSO:

Methylcysteine sulfoxide, S-methyl-L-cysteine sulfoxide, methiin

Me2SO2 :

Dimethyl sulfone; methylsulfonyl methane

Met:

Methionine

MePhSO:

Methyl phenyl sulfoxide

MetSO:

Methionine sulfoxide

MetSeO:

Methionine selenoxide

MMTS:

Methyl methane thiosulfonate

MSeA:

Methylseleninic acid

Msr:

Methionine sulfoxide reductase

MsrA:

Methionine sulfoxide reductase A

MsrB:

Methionine sulfoxide reductase B

NADH:

Reduced nicotinamide adenine dinucleotide

NADP:

Nictotinamide adenine dinucleotide phosphate

NADPH:

Reduced nicotinamide adenine dinucleotide phosphate

Na2Se:

Sodium selenide

Na2SeO3 :

Sodium selenite

Na2SeO4 :

Sodium selenate

3O2:

Triplet oxygen

O •−2 :

Superoxide anion radical

OH:

Hydroxyl radical

ONOOH:

Peroxynitrous acid

PCSO:

Propiin, S-propyl-L-cysteine sulfoxide

PhSO:

Phenyl sulfoxide

RDA:

Recommended daily allowance

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

RSSeSR:

Selenotrisulfide

SAR:

Seasonal allergy rhinitis

Se0 :

Selenium (elemental)

SeCys:

Selenocysteine

SeMet:

Selenomethionine

SELECT:

Selenium and Vitamin E Cancer Prevention Trial

SeO2 :

Selenium dioxide

SOD:

Superoxide dismutase

TEMPO:

2,2,6,6-Tetramethylpiperdine-1-oxyl

TPCSO:

Isoalliin, S-trans-1-propenyl-L-cysteine sulfoxide

References

  1. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry and Cell Biology, 39, 44–84.

    Article  PubMed  CAS  Google Scholar 

  2. Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160, 1–40.

    Article  PubMed  CAS  Google Scholar 

  3. Storz, G., & Imlay, J. A. (1999). Oxidative stress. Current Opinion in Microbiology, 2, 188–194.

    Article  PubMed  CAS  Google Scholar 

  4. Farr, S. B., & Kogoma, T. (1991). Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiological Reviews, 55, 561–585.

    PubMed  CAS  Google Scholar 

  5. Cadenas, E., & Davies, K. J. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biology and Medicine, 29, 222–230.

    Article  PubMed  CAS  Google Scholar 

  6. Orrenius, S., Gogvadze, V., & Zhivotovsky, B. (2007). Mitochondrial oxidative stress: Implications for cell death. Annual Review of Pharmacology and Toxicology, 47, 143–183.

    Article  PubMed  CAS  Google Scholar 

  7. Marnett, L. J. (2000). Oxyradicals and DNA damage. Carcinogenesis, 21, 361–370.

    Article  PubMed  CAS  Google Scholar 

  8. Huang, X. (2003). Iron overload and its association with cancer risk in humans: Evidence for iron as a carcinogenic metal. Mutation Research, 533, 153–171.

    PubMed  CAS  Google Scholar 

  9. Halliwell, B. (2001). Role of free radicals in the neurodegenerative diseases: Therapeutic implications for antioxidant treatment. Drugs and Aging, 18, 685–716.

    Article  PubMed  CAS  Google Scholar 

  10. Markesbery, W. R. (1997). Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Biology and Medicine, 23, 134–147.

    Article  PubMed  CAS  Google Scholar 

  11. Markesbery, W. R., & Carney, J. M. (1999). Oxidative alterations in Alzheimer’s disease. Brain Pathology, 9, 133–146.

    Article  PubMed  CAS  Google Scholar 

  12. Markesbery, W. R., & Lovell, M. A. (2006). DNA oxidation in Alzheimer’s disease. Antioxidants and Redox Signaling, 8, 2039–4205.

    Article  PubMed  CAS  Google Scholar 

  13. Ide, T., Tsutsui, H., Hayashidani, S., Kang, D., Suematsu, N., Nakamura, K., et al. (2001). Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circulation Research, 88, 529–535.

    PubMed  CAS  Google Scholar 

  14. Steinberg, D. (1997). Low density lipoprotein oxidation and its pathobiological significance. The Journal of Biological Chemistry, 272, 20963–20966.

    Article  PubMed  CAS  Google Scholar 

  15. Dhalla, N. S., Temsah, R. M., & Nettican, T. (2000). Role of oxidative stress in cardiovascular diseases. Journal of Hypertension, 18, 655–673.

    Article  PubMed  CAS  Google Scholar 

  16. Kastan, M. B. (2008). DNA damage responses: Mechanisms and roles in human disease: 2007 G.H.A. Clowes Memorial Award Lecture. Molecular Cancer Research, 6, 517–524.

    Article  PubMed  CAS  Google Scholar 

  17. McCormick, M. L., Buettner, G. R., & Britigan, B. E. (1998). Endogenous superoxide dismutase levels regulate iron-dependent hydroxyl radical formation in Escherichia coli exposed to hydrogen peroxide. Journal of Bacteriology, 180, 622–625.

    PubMed  CAS  Google Scholar 

  18. Henle, E. S., & Linn, S. (1997). Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. The Journal of Biological Chemistry, 272, 19095–19098.

    Article  PubMed  CAS  Google Scholar 

  19. Flint, D. H., Tuminello, J. F., & Emptage, M. H. (1993). The inactivation of Fe-S cluster containing hydro-lyases by superoxide. The Journal of Biological Chemistry, 268, 22369–22376.

    PubMed  CAS  Google Scholar 

  20. Park, S., & Imlay, J. A. (2003). High levels of intracellular cysteine promote oxidative DNA damage by driving the fenton reaction. Journal of Bacteriology, 185, 1942–1950.

    Article  PubMed  CAS  Google Scholar 

  21. Rodriguez, H., Holmquist, G. P., D’Agostino, R., Jr., Keller, J., & Akman, S. A. (1997). Metal ion-dependent hydrogen peroxide-induced DNA damage is more sequence specific than metal specific. Cancer Research, 57, 2394–2403.

    PubMed  CAS  Google Scholar 

  22. Seaver, L. C., & Imlay, J. A. (2004). Are respiratory enzymes the primary sources of intracellular hydrogen peroxide? The Journal of Biological Chemistry, 279, 48742–48750.

    Article  PubMed  CAS  Google Scholar 

  23. Ramoutar, R. R., & Brumaghim, J. L. (2007). Effects of inorganic selenium compounds on oxidative DNA damage. Journal of Inorganic Biochemistry, 101, 101028–101035.

    Article  CAS  Google Scholar 

  24. Imlay, J. A., & Linn, S. (1988). DNA damage and oxygen radical toxicity. Science, 240, 1302–1309.

    Article  PubMed  CAS  Google Scholar 

  25. Hoffmann, M. E., Mello-Filho, A. C., & Meneghini, R. (1984). Correlation between cytotoxic effect of hydrogen peroxide and the yield of DNA strand breaks in cells of different species. Biochimica et Biophysica Acta, 781, 234–238.

    PubMed  CAS  Google Scholar 

  26. Henle, E. S., Han, Z., Tang, N., Rai, P., Luo, Y., & Linn, S. (1999). Sequence-specific DNA cleavage by Fe2+-mediated Fenton reactions has possible biological implications. The Journal of Biological Chemistry, 274, 962–971.

    Article  PubMed  CAS  Google Scholar 

  27. Imlay, J. A., Chin, S. M., & Linn, S. (1988). Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science, 240, 640–642.

    Article  PubMed  CAS  Google Scholar 

  28. Nunoshiba, T., Obata, F., Boss, A. C., Oikawa, S., Mori, T., Kawanishi, S., et al. (1999). Role of iron and superoxide for generation of hydroxyl radical, oxidative DNA lesions, and mutagenesis in Escherichia coli. The Journal of Biological Chemistry, 274, 34832–34837.

    Article  PubMed  CAS  Google Scholar 

  29. Pastor, N., Weinstein, H., Jamison, E., & Brenowitz, M. (2000). A detailed interpretation of OH radical footprints in a TBP-DNA complex reveals the role of dynamics in the mechanism of sequence-specific binding. Journal of Molecular Biology, 304, 55–68.

    Article  PubMed  CAS  Google Scholar 

  30. Emerit, J., Beaumont, C., & Trivin, F. (2001). Iron metabolism, free radicals, and oxidative injury. Biomedicine and Pharmacotherapy, 55, 333–339.

    Article  CAS  Google Scholar 

  31. Stohs, S. J., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology and Medicine, 18, 321–336.

    Article  PubMed  CAS  Google Scholar 

  32. Lippard, S. J., & Berg, J. M. (1994). Principles of bioinorganic chemistry. Mills Valley: University Science Books.

    Google Scholar 

  33. Keyer, K., & Imlay, J. A. (1996). Superoxide accelerates DNA damage by elevating free-iron levels. Proceedings of the National Academy of Sciences of the United States of America, 93, 13635–13640.

    Article  PubMed  CAS  Google Scholar 

  34. Woodmansee, A. N., & Imlay, J. A. (2002). Quantitation of intracellular free iron by electron paramagnetic resonance spectroscopy. Methods in Enzymology, 349, 3–9.

    Article  PubMed  CAS  Google Scholar 

  35. Lippard, S. J. (1999). Free copper ions in the cell? Science, 284, 748–749.

    Article  PubMed  CAS  Google Scholar 

  36. Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C., & O’Halloran, T. V. (1999). Undetectable intracellular free copper: The requirement of a copper chaperone for superoxide dismutase. Science, 284, 805–808.

    Article  PubMed  CAS  Google Scholar 

  37. Yang, L., McRae, R., Henary, M. M., Patel, R., Lai, B., Vogt, S., et al. (2005). Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron x-ray fluorescence microscopy. Proceedings of the National Academy of Sciences of the United States of America, 102, 11179–11184.

    Article  PubMed  CAS  Google Scholar 

  38. Que, E. L., Domaille, D. W., & Chang, C. J. (2008). Metals in neurobiology: Probing their chemistry and biology with molecular imaging. Chemical Reviews, 106, 1517–1549.

    Article  CAS  Google Scholar 

  39. Brown, D. R., Qin, K. F., Herms, J. W., Madlung, A., Manson, J., Strome, R., et al. (1997). The cellular prion protein binds copper in vivo. Nature, 390, 684–687.

    Article  PubMed  CAS  Google Scholar 

  40. Stockel, J., Safar, J., Wallace, A. C., Cohen, F. E., & Prusiner, S. B. (1998). Prion protein selectively binds copper(II) ions. Biochemistry, 37, 7185–7193.

    Article  PubMed  CAS  Google Scholar 

  41. Imlay, J. A., & Linn, S. (1986). Bimodal pattern of killing of DNA-repair-defective or anoxically grown Escherichia coli by hydrogen peroxide. Journal of Bacteriology, 166, 519–527.

    PubMed  CAS  Google Scholar 

  42. Imlay, J. A., & Linn, S. (1987). Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. Journal of Bacteriology, 169, 2967–2976.

    PubMed  CAS  Google Scholar 

  43. Mello-Filho, A. C., & Meneghini, R. (1991). Iron is the intracellular metal involved in the production of DNA damage by oxygen radicals. Mutation Research, 251, 109–113.

    PubMed  CAS  Google Scholar 

  44. Singal, P. K., Khaper, N., Palace, V., & Kumar, D. (1998). The role of oxidative stress in the genesis of heart disease. Cardiovascular Research, 40, 426–432.

    Article  PubMed  CAS  Google Scholar 

  45. Collins, A. R. (1999). Oxidative DNA damage, antioxidants, and cancer. BioEssays, 21, 238–246.

    Article  PubMed  CAS  Google Scholar 

  46. Siman, C. M., & Eriksson, U. J. (1997). Vitamin E decreases the occurrence of malformations in the offspring of diabetic rats. Diabetes, 46, 1054–1061.

    Article  PubMed  CAS  Google Scholar 

  47. Siman, C. M., & Eriksson, U. J. (1997). Vitamin C supplementation of the maternal diet reduces the rate of malformation in the offspring of diabetic rats. Diabetologia, 40, 1416–1424.

    Article  PubMed  CAS  Google Scholar 

  48. Ames, B. N. (2001). DNA damage from micronutrient deficiencies is likely to be a major cause of cancer. Mutation Research, 475, 7–20.

    PubMed  CAS  Google Scholar 

  49. Battin, E. E., & Brumaghim, J. L. (2008). Metal specificity in DNA damage prevention by sulfur antioxidants. Journal of Inorganic Biochemistry, 102, 2036–2042.

    Article  PubMed  CAS  Google Scholar 

  50. Perron, N. R., Hodges, J. N., Jenkins, M., & Brumaghim, J. L. (2008). Predicting how polyphenol antioxidants prevent DNA damage by binding to iron. Inorganic Chemistry, 47, 6153–6161.

    Article  PubMed  CAS  Google Scholar 

  51. Ramoutar, R. R., & Brumaghim, J. L. (2007). Investigating the antioxidant properties of oxo-sulfur compounds on metal-mediated DNA damage. Main Group Chemistry, 6, 143–153.

    Article  CAS  Google Scholar 

  52. Combs, G. F., & Gray, W. P. (1998). Chemopreventive agents: Selenium. Pharmacology and Therapeutics, 79, 179–192.

    Article  PubMed  CAS  Google Scholar 

  53. Xiao, H., & Parkin, K. L. (2002). Antioxidant functions of selected allium thiosulfinates and S-alk(en)yl-L-cysteine sulfoxides. Journal of Agriculture and Food Chemistry, 50, 2488–2493.

    Article  CAS  Google Scholar 

  54. Yin, M.-C., & Cheng, W.-S. (1998). Antioxidant activity of several Allium members. Journal of Agriculture and Food Chemistry, 46, 4097–4101.

    Article  CAS  Google Scholar 

  55. Holmgren, A. (2006). Selenite in cancer therapy: A commentary on “Selenite induces apoptosis in sarcomatoid malignant mesothelioma cells through oxidative stress”. Free Radical Biology and Medicine, 41, 862–865.

    Article  PubMed  CAS  Google Scholar 

  56. Schrauzer, G. N. (2001). Nutritional selenium supplements: Product types, quality, and safety. Journal of the American College of Nutrition, 20, 1–4.

    PubMed  CAS  Google Scholar 

  57. Takahashi, M., Sato, T., Shinohara, F., Echigo, S., & Rikiishi, H. (2005). Possible role of glutathione in mitochondrial apoptosis of human oral squamous cell carcinoma caused by inorganic selenium compounds. International Journal of Oncology, 27, 489–495.

    PubMed  CAS  Google Scholar 

  58. Zhong, W., & Oberley, T. D. (2001). Redox-mediated effects of selenium on apoptosis and cell cycle in the LNCaP human prostate cancer cell line. Cancer Research, 61, 7071–7078.

    PubMed  CAS  Google Scholar 

  59. Finley, J. W., Ip, C., Lisk, D. J., Davis, C. D., Hintze, K. J., & Whanger, P. D. (2001). Cancer-protective properties of high-selenium broccoli. Journal of Agriculture and Food Chemistry, 49, 2679–2683.

    Article  CAS  Google Scholar 

  60. Spallholz, J. E., Mallory Boylan, L., & Rhaman, M. M. (2004). Environmental hypothesis: Is poor dietary selenium intake an underlying factor for arsenicosis and cancer in Bangladesh and West Bengal, India? Science of the Total Environment, 323, 21–32.

    Article  PubMed  CAS  Google Scholar 

  61. Gladyshev, V. N., & Kryukov, G. V. (2001). Evolution of selenocysteine-containing proteins: Significance of identification and functional characterization of selenoproteins. BioFactors, 14, 87–92.

    Article  PubMed  CAS  Google Scholar 

  62. Tapiero, H., Townsend, D. M., & Tew, K. D. (2003). The antioxidant role of selenium and seleno-compounds. Biomedicine and Pharmacotherapy, 57, 134–144.

    Article  CAS  Google Scholar 

  63. Brown, K. M., & Arthur, J. R. (2001). Selenium, selenoproteins and human health: A review. Public Health Nutrition, 4, 593–599.

    Article  PubMed  CAS  Google Scholar 

  64. Stadtman, T. C. (2002). Discoveries of vitamin B12 and selenium enzymes. Annual Review of Biochemistry, 71, 1–16.

    Article  PubMed  CAS  Google Scholar 

  65. Brigelius-Flohe, R. (1999). Tissue-specific functions of individual glutathione peroxidases. Free Radical Biology and Medicine, 27, 951–965.

    Article  PubMed  CAS  Google Scholar 

  66. Cartes, P., Gianfreda, L., & Mora, M. L. (2005). Upatake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms. Plant and Soil, 276, 359–367.

    Article  CAS  Google Scholar 

  67. Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., & Hoekstra, W. G. (1973). Selenium: Biochemical role as a component of glutathione peroxidase. Science, 179, 588–590.

    Article  PubMed  CAS  Google Scholar 

  68. Tinggi, U. (2003). Essentiality and toxicity of selenium and its status in Australia: A review. Toxicology Letters, 137, 103–110.

    Article  PubMed  CAS  Google Scholar 

  69. Beilstein, M. A., & Whanger, P. D. (1986). Chemical forms of selenium in rat tissues after administration of selenite or selenomethionine. Journal of Nutrition, 116, 1711–1719.

    PubMed  CAS  Google Scholar 

  70. Abdulah, R., Miyazaki, K., Nakazawa, M., & Koyoma, H. (2005). Chemical forms of selenium for cancer prevention. Journal of Trace Elements in Medicine and Biology, 19, 141–150.

    Article  PubMed  CAS  Google Scholar 

  71. Atmaca, G. (2004). Antioxidant effects of sulfur-containing amino acids. Yonsei Medical Journal, 45, 776–788.

    PubMed  CAS  Google Scholar 

  72. Waschulewski, I. H., & Sunde, R. A. (1988). Effect of dietary methionine on tissue selenium and glutathione peroxidase (EC 1.11.1.9) activity in rats given selenomethionine. British Journal of Nutrition, 60, 57–68.

    Article  PubMed  CAS  Google Scholar 

  73. Fairweather-Tait, S. J. (1997). Bioavailability of selenium. European Journal of Clinical Nutrition, 51, S20–S23.

    Article  PubMed  Google Scholar 

  74. Battin, E. E., Perron, N. R., & Brumaghim, J. L. (2006). The central role of metal coordination in selenium antioxidant activity. Inorganic Chemistry, 45, 499–501.

    Article  PubMed  CAS  Google Scholar 

  75. Davis, C. D., Feng, Y., Hein, D. W., & Finley, J. W. (1999). The chemical form of selenium influences 3,2′-dimethyl-4-aminobiphenyl-DNA adduct formation in rat colon. Journal of Nutrition, 129, 63–69.

    PubMed  CAS  Google Scholar 

  76. Ip, C., & Hayes, C. (1989). Tissue selenium levels in selenium-supplemented rats and their relevance in mammary cancer protection. Carcinogenesis, 10, 921–925.

    PubMed  CAS  Google Scholar 

  77. Hamilton, E. E., & Wilker, J. J. (2004). Inhibition of DNA alkylation damage with inorganic salts. Journal of Biological Inorganic Chemistry, 9, 894–902.

    Article  PubMed  CAS  Google Scholar 

  78. Nilsonne, G., Sun, X., Nystrom, C., Rundlof, A. K., Potamitou Fernandes, A., Bjornstedt, M., et al. (2006). Selenite induces apoptosis in sarcomatoid malignant mesothelioma cells through oxidative stress. Free Radical Biology and Medicine, 41, 874–885.

    Article  PubMed  CAS  Google Scholar 

  79. Zhou, N., Xiao, H., Li, T. K., Nur, E. K. A., & Liu, L. F. (2003). DNA damage-mediated apoptosis induced by selenium compounds. The Journal of Biological Chemistry, 278, 29532–29537.

    Article  PubMed  CAS  Google Scholar 

  80. Lima, E. A. C., Dire, G., Mattos, D. M. M., Freitas, R. S., Gomes, M. L., de Oliveira, M. B. N., et al. (2002). Effect of an extract of cauliflower (leaf) on the labeling of blood elements with technetium-99 m and on the survival of Escherichia coli AB1157 submitted to the treatment with stannous chloride. Food and Chemical Toxicology, 40, 919–923.

    Article  PubMed  CAS  Google Scholar 

  81. Rose, P., Whiteman, M., Moore, P. K., & Zhu, Y. Z. (2005). Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: The chemistry of potential therapeutic agents. Natural Product Reports, 22, 351–368.

    Article  PubMed  CAS  Google Scholar 

  82. Horvath, K., Noker, P. E., Somfai-Relle, S., Glavits, R., Financsek, I., & Schauss, A. G. (2002). Toxicity of methylsulfonylmethane in rats. Food and Chemical Toxicology, 40, 1459–1462.

    Article  PubMed  CAS  Google Scholar 

  83. Magnuson, B. A., Appleton, J., Ryan, B., & Matulka, R. A. (2007). Oral developmental toxicity study of methylsulfonylmethane in rats. Food and Chemical Toxicology, 45, 977–984.

    Article  PubMed  CAS  Google Scholar 

  84. Pearson, T. W., Dawson, H. J., & Lackey, H. B. (1981). Natural occurring levels of dimethyl sulfoxide in selected fruits, vegetables, grains, and beverages. Journal of Agriculture and Food Chemistry, 29, 1089–1091.

    Article  CAS  Google Scholar 

  85. Silva Ferreira, A. C., Rodrigues, P., Hogg, T., & Guedes, D. P. (2003). Influence of some technological parameters on the formation of dimethyl sulfide, 2-mercaptoethanol, methionol, and dimethyl sulfone in port wines. Journal of Agriculture and Food Chemistry, 51, 727–732.

    Article  CAS  Google Scholar 

  86. Berlett, B. S., & Stadtman, E. R. (1997). Protein oxidation in aging, disease, and oxidative stress. The Journal of Biological Chemistry, 272, 20313–20316.

    Article  PubMed  CAS  Google Scholar 

  87. Hoshi, T., & Heinemann, S. (2001). Regulation of cell function by methionine oxidation and reduction. Journal of Physiology, 531, 1–11.

    Article  PubMed  CAS  Google Scholar 

  88. Perrin, D., & Koppenol, W. H. (2000). The quantitative oxidation of methionine to methionine sulfoxide by peroxynitrite. Archives of Biochemistry and Biophysics, 377, 266–272.

    Article  PubMed  CAS  Google Scholar 

  89. Levine, R. L., Berlett, B. S., Moskovitz, J., Mosoni, L., & Stadtman, E. R. (1999). Methionine residues may protect proteins from critical oxidative damage. Mechanisms of Ageing and Development, 107, 323–332.

    Article  PubMed  CAS  Google Scholar 

  90. Schoneich, C. (2002). Redox processes of methionine relevant to beta-amyloid oxidation and Alzheimer’s disease. Archives of Biochemistry and Biophysics, 397, 370–376.

    Article  PubMed  CAS  Google Scholar 

  91. Stadtman, E. R., Moskovitz, J., & Levine, R. L. (2003). Oxidation of methionine residues of proteins: Biological consequences. Antioxidants and Redox Signaling, 5, 577–582.

    Article  PubMed  CAS  Google Scholar 

  92. Kim, H. Y., & Gladyshev, V. N. (2007). Methionine sulfoxide reductases: Selenoprotein forms and roles in antioxidant protein repair in mammals. Biochemical Journal, 407, 321–329.

    Article  PubMed  CAS  Google Scholar 

  93. Pennington, J. A., & Schoen, S. A. (1996). Total diet study: Estimated dietary intakes of nutritional elements, 1982–1991. International Journal for Vitamin and Nutrition Research, 66, 350–362.

    PubMed  CAS  Google Scholar 

  94. Pennington, J. A., & Schoen, S. A. (1996). Contributions of food groups to estimated intakes of nutritional elements: Results from the FDA total diet studies, 1982–1991. International Journal for Vitamin and Nutrition Research, 66, 342–349.

    PubMed  CAS  Google Scholar 

  95. Burk, R. F. (2002). Selenium, an antioxidant nutrient. Nutrition in Clinical Care, 5, 75–79.

    Article  PubMed  Google Scholar 

  96. Deore, M. D., Srivastava, A. K., & Sharma, S. K. (2005). Effect of reduced glutathione treatment on selenosis, blood selenium concentration and glutathione peroxidase activity after repeated short-term selenium exposure in buffalo calves. Toxicology, 213, 169–174.

    Article  PubMed  CAS  Google Scholar 

  97. Yang, G., Wang, S., Zhou, R., & Sun, S. (1983). Endemic selenium intoxication of humans in China. American Journal of Clinical Nutrition, 37, 872–881.

    PubMed  CAS  Google Scholar 

  98. Longnecker, M. P., Taylor, P. R., Levander, O. A., Howe, M., Veillon, C., McAdam, P. A., et al. (1991). Selenium in diet, blood, and toenails in relation to human health in a seleniferous area. American Journal of Clinical Nutrition, 53, 1288–1294.

    PubMed  CAS  Google Scholar 

  99. Koller, L. D., & Exon, J. H. (1986). The two faces of selenium - deficiency and toxicity - are similar in animals and man. Canadian Journal of Veterinary Research, 50, 297–306.

    PubMed  CAS  Google Scholar 

  100. MacDonald, D. W., Christian, R. G., Strausz, K. I., & Roff, J. (1981). Acute selenium toxicity in neonatal calves. Canadian Veterinary Journal, 22, 279–281.

    CAS  Google Scholar 

  101. Gissel-Nielsen, G., Gupta, U. C., Lamand, M., & Westermarck, T. (1984). Selenium in soils and plants and its importance in livestock and human nutrition. Advances in Agronomy, 37, 397–460.

    Article  CAS  Google Scholar 

  102. Gupta, U. C., & Gupta, S. C. (2000). Selenium in soils and crops, its deficiencies in livestock and humans: Implications for management. Communications in Soil Science and Plant Analysis, 31, 1791–1807.

    Article  CAS  Google Scholar 

  103. Gupta, U. C., & Watkinson, J. H. (1985). Agricultural significance of selenium. Outlook on Agriculture, 14, 183–189.

    CAS  Google Scholar 

  104. Kubota, J., Allaway, W. H., Carter, D. L., Cary, E. E., & Lazar, V. A. (1967). Selenium in crops in the United States in relation to selenium-responsive diseases of animals. Journal of Agriculture and Food Chemistry, 15, 448–453.

    Article  CAS  Google Scholar 

  105. Aro, A., Alfthan, G., & Varo, P. (1995). Effects of supplementation of fertilizers on human selenium in Finland. Analyst, 120, 841–843.

    Article  PubMed  CAS  Google Scholar 

  106. Thomson, C. D., & Robinson, M. F. (1996). The changing selenium status of New Zealand residents. European Journal of Clinical Nutrition, 50, 107–114.

    PubMed  CAS  Google Scholar 

  107. Whelan, B. R., & Barrow, N. J. (1994). Slow-release selenium fertilizers to correct selenium deficiency in grazing sheep in Western Australia. Fertilizer Research, 38, 183–188.

    Article  CAS  Google Scholar 

  108. Whelan, B. R., Peter, D. W., & Barrow, N. J. (1994). Selenium fertilizers for pastures grazed by sheep. I. Selenium concentrations in whole blood and plasma. Australian Journal of Agricultural Research, 45, 863–875.

    Article  CAS  Google Scholar 

  109. Pedrero, Z., Madrid, Y., & Camara, C. (2006). Selenium species bioaccessibility in enriched radish (Raphanus sativus): A potential dietary source of selenium. Journal of Agriculture and Food Chemistry, 54, 2412–2417.

    Article  CAS  Google Scholar 

  110. Taylor, E. W. (1995). Selenium and cellular immunity. Evidence that selenoproteins may be encoded in the +1 reading frame overlapping the human CD4, CD8, and HLA-DR genes. Biological Trace Element Research, 49, 85–95.

    Article  PubMed  CAS  Google Scholar 

  111. Cheng, Y. Y., & Qian, P. C. (1990). The effect of selenium-fortified table salt in the prevention of Keshan disease on a population of 1.05 million. Biomedical and Environmental Sciences, 3, 422–428.

    PubMed  CAS  Google Scholar 

  112. Hartikainen, H. (2005). Biogeochemistry of selenium and its impact on food chain quality and human health. Journal of Trace Elements in Medicine and Biology, 18, 309–318.

    Article  PubMed  CAS  Google Scholar 

  113. Moreno-Reye, R., Mathieu, F., Boelaert, M., Begaux, F., Suetens, C., Rivera, M. T., et al. (2003). Selenium and iodine supplementation of rural Tibetan children affected by Kashin-Beck osteoarthropathy. The American Journal of Clinical Nutrition, 78, 134–144.

    Google Scholar 

  114. Vanderpas, J. B., Contempre, B., Duale, N. L., Goossens, W., Bebe, N., Thorpe, R., et al. (1990). Iodine and selenium deficiency associated with cretinism in northern Zaire. American Journal of Clinical Nutrition, 52, 1087–1093.

    PubMed  CAS  Google Scholar 

  115. Chen, L., Yang, F., Xu, J., Hu, Y., Hu, Q., Zhang, Y., et al. (2002). Determination of selenium concentration of rice in China and effect of fertilization of selenite and selenate on selenium content of rice. Journal of Agriculture and Food Chemistry, 50, 5128–5130.

    Article  CAS  Google Scholar 

  116. Yang, C., Niu, C., Bodo, M., Gabriel, E., Notbohm, H., Wolf, E., et al. (1993). Fulvic acid supplementation and selenium deficiency disturb the structural integrity of mouse skeletal tissue. An animal model to study the molecular defects of Kashin-Beck disease. Biochemical Journal, 289, 829–835.

    PubMed  CAS  Google Scholar 

  117. Allander, E. (1994). Kashin-Beck disease. An analysis of research and public health activities based on a bibliography 1849–1992. Scandinavian Journal of Rheumatology—Supplement, 99, 1–36.

    Article  PubMed  CAS  Google Scholar 

  118. Arthur, J. R., & Beckett, G. J. (1999). Thyroid function. British Medical Bulletin, 55, 658–668.

    Article  PubMed  CAS  Google Scholar 

  119. Higuchi, T., Ichijo, S., Osame, S., & Ohishi, H. (1989). Studies on serum selenium and tocopherol in white muscle disease of foal. Japanese Journal of Veterinary Science, 51, 52–59.

    PubMed  CAS  Google Scholar 

  120. Schofield, F. W. (1953). The prevention and treatment of white muscle disease (muscular dystrophy). Canadian Journal of Comparative Medicine, 17, 422–424.

    CAS  Google Scholar 

  121. Schroder, G., Weissenbock, H., Baumgartner, W. C., & Truschner, K. (1991). Selenium toxicosis in weaned pigs. Wiener Tiearztilche Monatsshrift, 80, 171–176.

    Google Scholar 

  122. Prasad, T., & Arora, S. P. (1991). Influence of different sources of injected selenium on certain enzymes, glutathione and adenosylmethionine concentration in buffalo (Bubalus bubalis) calves. British Journal of Nutrition, 66, 261–267.

    Article  PubMed  CAS  Google Scholar 

  123. Kiremidjian-Schumacher, L., Roy, M., Wishe, H. I., Cohen, M. W., & Stotzky, G. (1994). Supplementation with selenium and human immune cell functions. II. Effect on cytotoxic lymphocytes and natural killer cells. Biological Trace Element Research, 41, 115–127.

    Article  PubMed  CAS  Google Scholar 

  124. Roy, M., Kiremidjian-Schumacher, L., Wishe, H. I., Cohen, M. W., & Stotzky, G. (1994). Supplementation with selenium and human immune cell functions. I. Effect on lymphocyte proliferation and interleukin 2 receptor expression. Biological Trace Element Research, 41, 103–114.

    Article  PubMed  CAS  Google Scholar 

  125. Look, M. P., Rockstroh, J. K., Rao, G. S., Kreuzer, K. A., Spengler, U., & Sauerbruch, T. (1997). Serum selenium versus lymphocyte subsets and markers of disease progression and inflammatory response in human immunodeficiency virus-1 infection. Biological Trace Element Research, 56, 31–41.

    Article  PubMed  CAS  Google Scholar 

  126. Singhal, N., & Austin, J. (2002). A clinical review of micronutrients in HIV infections. Journal of the International Association of Physicians in AIDS Care, 1, 63–75.

    Article  PubMed  Google Scholar 

  127. Romero-Alvira, D., & Roche, E. (1998). The keys of oxidative stress in acquired immune deficiency syndrome apoptosis. Medical Hypotheses, 51, 169–173.

    Article  PubMed  CAS  Google Scholar 

  128. Campa, A., Shor-Posner, G., Indacoche, F., Zhang, G., Lai, H., Asthana, D., et al. (1999). Mortality risk in selenium-deficient HIV-positive children. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, 15, 508–513.

    Google Scholar 

  129. Baum, M. K., Shor-Posner, G., Lai, S., Zhang, G., Lai, H., Fletcher, M. A., et al. (1997). High risk of HIV-related mortality is associated with selenium deficiency. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, 15, 370–374.

    PubMed  CAS  Google Scholar 

  130. Chen, C., Zhou, J., Xu, H., Jiang, Y., & Zhu, G. (1997). Effect of selenium supplementation on mice infected with LP-BM5 MuLV, a murine AIDS model. Biological Trace Element Research, 59, 187–193.

    Article  PubMed  CAS  Google Scholar 

  131. Olmsted, L., Schruazer, G. N., Flores-Acre, M., & Dowd, J. (1989). Selenium supplementation of symptomatic immunodeficiency virus infected patients. Biological Trace Element Research, 25, 89–96.

    Google Scholar 

  132. Schrauzer, G. N., & Sacher, J. (1994). Selenium in the maintenance and therapy of HIV-infected patients. Chemico-Biological Interactions, 91, 199–205.

    Article  PubMed  CAS  Google Scholar 

  133. Bhuvarahamurthy, V., Balasubramanian, N., & Govindasamy, S. (1996). Effect of radiotherapy and chemoradiotherapy on circulating antioxidant system of human uterine cervical carcinoma. Molecular and Cellular Biochemistry, 158, 17–23.

    PubMed  CAS  Google Scholar 

  134. Duffield-Lillico, A. J., Reid, M. E., Turnbull, B. W., Combs, G. F. H. S. E., Fischbach, L. A., Marshall, J. R., et al. (2002). Baseline characteristics and the effect of selenium supplementation on cancer incidence in a randomized clinical trial: A summary report of the Nutritional Prevention of Cancer trial. Cancer Epidemiology, Biomarkers and Prevention, 11, 630–639.

    PubMed  CAS  Google Scholar 

  135. Reid, M. E., Duffield-Lillico, A. J., Slate, E., Natarajan, N., Turnbull, B., Jacobs, E., et al. (2008). The nutritional prevention of cancer: 400 Mcg per day selenium treatment. Nutrition and Cancer, 60, 155–163.

    Article  PubMed  CAS  Google Scholar 

  136. Rayman, M. P., Combs, G. D., Jr., & Waters, D. J. (2009). Selenium and vitamin E supplementation for cancer prevention. Journal of the American Medical Association, 301, 1976.

    Article  Google Scholar 

  137. Hatfield, D. L., & Gladyshev, V. N. (2009). The outcome of Selenium and Vitamin E Cancer Prevention Trial (SELECT) reveals the need for better understanding of selenium biology. Molecular Interventions, 9, 18–21.

    Article  PubMed  CAS  Google Scholar 

  138. Lippman, S. M., Klein, E. A., Goodman, P. J., Thompson, I. M., Ford, L. G., Parnes, H. L., et al. (2009). Effect of selenium and vitamin E on risk of prostate cancer and other cancers: The Selenium and Vitamin E Cancer Prevention Trial (SELECT). Journal of the American Medical Association, 301, 39–51.

    Article  PubMed  CAS  Google Scholar 

  139. Clark, L. C., Combs, G. F., Jr., Turnbull, B. W., Slate, E. H., Chalker, D. K., Chow, J., et al. (1996). Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. Journal of the American Medical Association, 276, 1957–1963.

    Article  PubMed  CAS  Google Scholar 

  140. Duffield-Lillico, A. J., Dalkin, B. L., Reid, M. E., Turnbull, B. W., Slate, E. H., Jacobs, E. T., et al. (2003). Selenium supplementation, baseline plasma selenium status and incidence of prostate cancer: An analysis of the complete treatment period of the Nutritional Prevention of Cancer Trial. British Journal of Urology International, 91, 608–612.

    CAS  Google Scholar 

  141. Jackson, M. I., & Combs, G. F., Jr. (2008). Selenium and anticarcinogenesis: Underlying mechanisms. Current Opinion in Clinical Nutrition and Metabolic Care, 11, 718–726.

    Article  PubMed  CAS  Google Scholar 

  142. Zeng, H., & Combs, G. F., Jr. (2008). Selenium as an anticancer nutrient: Roles in cell proliferation and tumor cell invasion. Journal of Nutritional Biochemistry, 19, 1–7.

    Article  PubMed  CAS  Google Scholar 

  143. Stewart, M. S., Spallholz, J. E., Neldner, K. H., & Pence, B. C. (1999). Selenium compounds have disparate abilities to impose oxidative stress and induce apoptosis. Free Radical Biology and Medicine, 26, 42–48.

    Article  PubMed  CAS  Google Scholar 

  144. Mantovani, G., Maccio, A., Madeddu, C., Serpe, R., Massa, E., Gramignano, G., et al. (2004). Selenium is effective in inducing lymphocyte progression through cell cycle in cancer patients: Potential mechanisms for its activity. Journal of Experimental Therapeutics and Oncology, 4, 69–78.

    PubMed  CAS  Google Scholar 

  145. Spyrou, G., Bjornstedt, M., Skog, S., & Holmgren, A. (1996). Selenite and selenate inhibit human lymphocyte growth via different mechanisms. Cancer Research, 56, 4407–4412.

    PubMed  CAS  Google Scholar 

  146. Vadhanavikit, S., Ip, C., & Ganther, H. E. (1993). Metabolites of sodium selenite and methylated selenium compounds administered at cancer chemoprevention levels in the rat. Xenobiotica, 23, 731–745.

    Article  PubMed  CAS  Google Scholar 

  147. Shen, C. L., Song, W., & Pence, B. C. (2001). Interactions of selenium compounds with other antioxidants in DNA damage and apoptosis in human normal keratinocytes. Cancer Epidemiology, Biomarkers and Prevention, 10, 385–390.

    PubMed  CAS  Google Scholar 

  148. Ip, C. (1986). The chemopreventive role of selenium in carcinogenesis. Journal of the American College of Toxicology, 5, 7–20.

    CAS  Google Scholar 

  149. Spallholz, J. E. (1994). On the nature of selenium toxicity and carcinostatic activity. Free Radical Biology and Medicine, 17, 45–64.

    Article  PubMed  CAS  Google Scholar 

  150. Battin, E. E., Zimmerman, M. T., Ramoutar, R. R., Quarles, C., & Brumaghim, J. L. Preventing metal-mediated oxidative DNA damage with selenium compounds (submitted).

  151. Ramoutar, R. R. (2009). Understanding the antioxidant mechanism of inorganic selenium, oxo-sulfur, and polyphenol compounds, and the biological implications of functionalized nanoparticles, Ph.D. Dissertation, Clemson University.

  152. Berggren, M. M., Mangin, J. F., Gasdaska, J. R., & Powis, G. (1999). Effect of selenium on rat thioredoxin reductase activity increase by supranutritional selenium and decrease by selenium deficiency. Biochemical Pharmacology, 57, 187–193.

    Article  PubMed  CAS  Google Scholar 

  153. Berggren, M., Gallegos, A., Gasdaska, J., & Powis, G. (1997). Cellular thioredoxin reductase activity is regulated by selenium. Anticancer Research, 17, 3377–3380.

    PubMed  CAS  Google Scholar 

  154. El-Bayoumy, K. (2001). The protective role of selenium on genetic damage and on cancer. Mutation Research, 475, 123–139.

    PubMed  CAS  Google Scholar 

  155. Ip, C. (1998). Lessons from basic research in selenium and cancer prevention. Journal of Nutrition, 128, 1845–1854.

    PubMed  CAS  Google Scholar 

  156. Young, V. R., Nahapetian, A., & Janghorbani, M. (1982). Selenium bioavailability with reference to human nutrition. American Journal of Clinical Nutrition, 35, 1076–1088.

    PubMed  CAS  Google Scholar 

  157. Lu, J., Kaeck, M., Jiang, C., Wilson, A. C., & Thompson, H. J. (1994). Selenite induction of DNA strand breaks and apoptosis in mouse leukemic L1210 cells. Biochemical Pharmacology, 47, 1531–1535.

    Article  PubMed  CAS  Google Scholar 

  158. Wilson, A. C., Thompson, H. J., Schedin, P. J., Gibson, N. W., & Ganther, H. E. (1992). Effect of methylated forms of selenium on cell viability and the induction of DNA strand breakage. Biochemical Pharmacology, 43, 1137–1141.

    Article  PubMed  CAS  Google Scholar 

  159. Lu, J., Jiang, C., Kaeck, M., Ganther, H., Vadhanavikit, S., Ip, C., et al. (1995). Dissociation of the genotoxic and growth inhibitory effects of selenium. Biochemical Pharmacology, 50, 213–219.

    Article  PubMed  CAS  Google Scholar 

  160. Gazi, M. H., Gong, A., Donkena, K. V., & Young, C. Y. (2007). Sodium selenite inhibits interleukin-6-mediated androgen receptor activation in prostate cancer cells via upregulation of c-Jun. Clinica Chimica Acta, 380, 145–150.

    Article  CAS  Google Scholar 

  161. Burk, R. F., Lawrence, R. A., & Lane, J. M. (1980). Liver necrosis and lipid peroxidation in the rat as the result of paraquat and diquat administration. Effect of selenium deficiency. Journal of Clinical Investigation, 65, 1024–1031.

    Article  PubMed  CAS  Google Scholar 

  162. Hill, K. E., & Burk, R. F. (1997). Selenoprotein P: Recent studies in rats and in humans. Biomedical and Environmental Sciences, 10, 198–208.

    PubMed  CAS  Google Scholar 

  163. Holben, D. H., & Smith, A. M. (1999). The diverse role of selenium within selenoproteins: A review. Journal of the American Dietetic Association, 99, 836–843.

    Article  PubMed  CAS  Google Scholar 

  164. Yang, J. G., Hill, K. E., & Burk, R. F. (1989). Dietary selenium intake controls rat plasma selenoprotein P concentration. Journal of Nutrition, 119, 1010–1012.

    PubMed  CAS  Google Scholar 

  165. Gallegos, A., Berggren, M., Gasdaska, J. R., & Powis, G. (1997). Mechanisms of the regulation of thioredoxin reductase activity in cancer cells by the chemopreventive agent selenium. Cancer Research, 57, 4965–4970.

    PubMed  CAS  Google Scholar 

  166. Behne, D., Kyriakopoeulos, A., Weiss-Nowak, C., Kalckloesch, M., Westphal, C., & Gessner, H. (1996). Newly found selenium-containing proteins in the tissues of the rat. Biological Trace Element Research, 55, 99–110.

    Article  PubMed  CAS  Google Scholar 

  167. Singh, M., Lu, J., Briggs, S. P., McGinley, J. N., Haegele, A. D., & Thompson, H. J. (1994). Effect of excess dietary iron on the promotion stage of 1-methyl-1-nitrosourea-induced mammary carcinogenesis: Pathogenetic characteristics and distribution of iron. Carcinogenesis, 15, 1567–1570.

    Article  PubMed  CAS  Google Scholar 

  168. Thirunavukkarasu, C., Prince Vijeya Singh, J., Thangavel, M., Selvendiran, K., & Sakthisekaran, D. (2002). Dietary influence of selenium on the incidence of N-nitrosodiethylamine-induced hepatoma with reference to drug and glutathione metabolizing enzymes. Cell Biochemistry and Function, 20, 347–356.

    Article  PubMed  CAS  Google Scholar 

  169. Thirunavukkarasu, C., & Sakthisekaran, D. (2003). Sodium selenite, dietary micronutrient, prevents the lymphocyte DNA damage induced by N-nitrosodiethylamine and phenobarbital promoted experimental hepatocarcinogenesis. Journal of Cellular Biochemistry, 88, 578–588.

    Article  PubMed  CAS  Google Scholar 

  170. Thompson, H. J., Wilson, A., Lu, J., Singh, M., Jiang, C., Upadhyaya, P., et al. (1994). Comparison of the effects of an organic and an inorganic form of selenium on a mammary carcinoma cell line. Carcinogenesis, 15, 183–186.

    Article  PubMed  CAS  Google Scholar 

  171. Kim, T. S., Yun, B. Y., & Kim, I. Y. (2003). Induction of the mitochondrial permeability transition by selenium compounds mediated by oxidation of the protein thiol groups and generation of the superoxide. Biochemical Pharmacology, 66, 2301–2311.

    Article  PubMed  CAS  Google Scholar 

  172. Ganther, H. E. (1968). Selenotrisulfides. Formation by the reaction of thiols with selenious acid. Biochemistry, 7, 2898–2905.

    Article  PubMed  CAS  Google Scholar 

  173. Ganther, H. E. (1971). Reduction of the selenotrisulfide derivative of glutathione to a persulfide analog by glutathione reductase. Biochemistry, 10, 4089–4098.

    Article  PubMed  CAS  Google Scholar 

  174. Kim, T. S., Jeong, D. W., Yun, B. Y., & Kim, I. Y. (2002). Dysfunction of rat liver mitochondria by selenite: Induction of mitochondrial permeability transition through thiol-oxidation. Biochemical and Biophysical Research Communications, 294, 1130–1137.

    Article  PubMed  CAS  Google Scholar 

  175. Seko, Y., & Imura, N. (1997). Active oxygen generation as a possible mechanism of selenium toxicity. Biomedical and Environmental Sciences, 10, 333–339.

    PubMed  CAS  Google Scholar 

  176. Harrison, W. T. A., Stucky, G. D., Morris, R. E., & Cheetham, A. K. (1992). Synthesis and structure of aluminum selenite trihydrate, Al2(SeO3)3·3H2O. Acta Cryst, C48, 1365–1367.

    CAS  Google Scholar 

  177. Xiao, D., An, H., Wang, E., & Xu, L. (2005). Synthesis and structure of a novel three-dimensional metal selenite containing multidirectional intersecting double helical chains: [Fe2(H2O)4(SeO3)2]. Journal of Molecular Structure, 740, 249–253.

    Article  CAS  Google Scholar 

  178. Cao, G., Sofic, E., & Prior, L. R. (1996). Antioxidant capacity of tea and common vegetables. Journal of Agriculture and Food Chemistry, 44, 3426–3431.

    Article  CAS  Google Scholar 

  179. Gey, K. F. (1990). The antioxidant hypothesis of cardiovascular disease: Epidemiology and mechanisms. Biochemical Society Transactions, 18, 1041–1045.

    PubMed  CAS  Google Scholar 

  180. Willett, C. W. (1994). Diet and health: What should we eat? Science, 264, 532–537.

    Article  PubMed  CAS  Google Scholar 

  181. Ishikawa, K., Naganawa, R., Yoshida, H., Iwata, N., Fukuda, H., Fujino, T., et al. (1996). Antimutagenic effects of ajoene, an organosulfur compound derived from garlic. Bioscience, Biotechnology, and Biochemistry, 60, 2086–2088.

    Article  PubMed  CAS  Google Scholar 

  182. Kyo, E., Uda, N., Suzuki, A., Kakimoto, M., Ushujima, M., Kasuga, S., et al. (1999). Prevention of psychological stress-induced immune suppression by aged garlic extract. Phytomedicine, 5, 259–267.

    Google Scholar 

  183. Mirhadi, S. A., Singh, S., & Gupta, P. P. (1991). Effect of garlic supplementation to cholesterol-rich diet on development of atherosclerosis in rabbits. Indian Journal of Experimental Biology, 29, 162–168.

    PubMed  CAS  Google Scholar 

  184. Morimitsu, Y., Morioka, Y., & Kawakishi, S. (1992). Inhibitors of platelet aggregation generated from mixtures of Allium species and/or S-alk(en)nyl-L-cysteine sulfoxides. Journal of Agriculture and Food Chemistry, 40, 368–372.

    Article  CAS  Google Scholar 

  185. Prasad, K., Laxdal, V. A., Yu, M., & Raney, B. L. (1995). Antioxidant activity of allicin, an active principle in garlic. Molecular and Cellular Biochemistry, 148, 183–189.

    Article  PubMed  CAS  Google Scholar 

  186. Siegers, C.-P., Robke, A., & Pentz, R. (1999). Effects of garlic preparations on superoxide production by phorbol ester activated granulocytes. Phytomedicine, 6, 13–16.

    PubMed  CAS  Google Scholar 

  187. Singh, S. V., Pan, S. S., Srivastava, S. K., Xia, H., Hu, X., Zaren, H. A., et al. (1998). Differential induction of NAD(P)H:quinone oxidoreductase by anti-carcinogenic organosulfides from garlic. Biochemical and Biophysical Research Communications, 244, 917–920.

    Article  PubMed  CAS  Google Scholar 

  188. Weber, N. D., Andersen, D. O., North, J. A., Murray, B. K., Lawson, L. D., & Hughes, B. G. (1992). In vitro virucidal effects of Allium sativum (garlic) extract and compounds. Planta Medica, 58, 417–423.

    Article  PubMed  CAS  Google Scholar 

  189. Briggs, W. H., Xiao, H., Parkin, K. L., Shen, C., & Goldman, I. L. (2000). Differential inhibition of human platelet aggregation by selected Allium thiosulfinates. Journal of Agriculture and Food Chemistry, 48, 5731–5735.

    Article  CAS  Google Scholar 

  190. Edwards, J. S., Musker, D., Collin, H. A., & Britton, G. (1994). The analysis of S-alk(en)yl-L-cysteine sulfoxides (flavor precursors) from species of Allium by high performance liquid chromatography. Phytochemical Analysis, 5, 4–9.

    Article  CAS  Google Scholar 

  191. Thomas, D. J., & Parkin, K. L. (1994). Quantification of alk(en)yl-L-cysteine sulfoxides and related amino acids in alliums by high-performance liquid chromatography. Journal of Agriculture and Food Chemistry, 42, 1632–1638.

    Article  CAS  Google Scholar 

  192. Yoo, K. S., & Pike, L. M. (1998). Determination of flavor precursor compound S-alk(en)yl-image-cysteine sulfoxides by an HPLC method and their distribution in Allium species. Scientia Horticulturae, 75, 1–10.

    Article  Google Scholar 

  193. Hirsch, K., Danilenko, M., Giat, J., Miron, T., Rabinkov, A., Wilchek, M., et al. (2000). Effect of purified allicin, the major ingredient of freshly crushed garlic, on cancer cell proliferation. Nutrition and Cancer, 38, 245–254.

    Article  PubMed  CAS  Google Scholar 

  194. Rabinkov, A., Miron, T., Konstantinovski, L., Wilchek, M., Mirelman, D., & Weiner, L. (1998). The mode of action of allicin: Trapping of radicals and interaction with thiol containing proteins. Biochimica et Biophysica Acta, 1379, 233–244.

    PubMed  CAS  Google Scholar 

  195. Ito, Y., Nakamura, Y., & Nakamura, Y. (1997). Suppression of aflatoxin B1- or methyl methanesulfonate-induced chromosome aberrations in rat bone marrow cells after treatment with S-methyl methanethiosulfonate. Mutation Research, 393, 307–316.

    PubMed  CAS  Google Scholar 

  196. Nakamura, Y., Matsuo, T., Shimoi, K., Nakamura, Y., & Tomita, I. (1993). S-Methyl methane thiosulfonate, a new antimutagenic compound isolated from Brassica oleracea L. var. botrytis. Biological and Pharmaceutical Bulletin, 16, 207–209.

    PubMed  CAS  Google Scholar 

  197. Nakamura, Y., Matsuo, T., Shimoi, K., Nakamura, Y., & Tomita, I. (1996). S-Methyl methanethiosulfonate, bio-antimutagen in homogenates of Cruciferae and Liliaceae vegetables. Bioscience, Biotechnology, and Biochemistry, 60, 1439–1443.

    Article  PubMed  CAS  Google Scholar 

  198. Kim, L. S., Axelrod, L. J., Howard, P., Buratovich, N., & Waters, R. F. (2006). Efficacy of methylsulfonylmethane (MSM) in osteoarthritis pain of the knee: A pilot clinical trial. Osteoarthritis Cartilage, 14, 286–294.

    Article  PubMed  CAS  Google Scholar 

  199. Barrager, E., Veltmann, J. R., Jr., Schauss, A. G., & Schiller, R. N. (2002). A multicentered, open-label trial on the safety and efficacy of methylsulfonylmethane in the treatment of seasonal allergic rhinitis. Journal of Alternative and Complementary Medicine, 8, 167–173.

    Article  Google Scholar 

  200. Hucker, H. B., Miller, J. K., Hochberg, A., Brobyn, R. D., Riordan, F. H., & Calesnick, B. (1967). Studies on the absorption, excretion and metabolism of dimethylsulfoxide (DMSO) in man. Journal of Pharmacology and Experimental Therapeutics, 155, 309–317.

    PubMed  CAS  Google Scholar 

  201. Wong, K. K., Wang, G. M., Dreyfuss, J., & Jacques, E. C. (1971). Absorption, excretion, and botransformation of dimethyl sulfoxide in man and miniature pigs after topical application as an 80% gel. Journal of Investigative Dermatology, 51, 44–48.

    Article  Google Scholar 

  202. Pryor, W. A., Jin, X., & Squadrito, G. L. (1994). One- and two-electron oxidations of methionine by peroxynitrite. Proceedings of the National Academy of Sciences of the United States of America, 91, 11173–11177.

    Article  PubMed  CAS  Google Scholar 

  203. Schoneich, C., Zhao, F., Wilson, G. S., & Borchardt, R. T. (1993). Iron-thiolate induced oxidation of methionine to methionine sulfoxide in small model peptides. Intramolecular catalysis by histidine. Biochimica et Biophysica Acta, 1158, 307–322.

    PubMed  CAS  Google Scholar 

  204. Ali, F. E., Separovic, F., Barrow, C. J., Cherny, R. A., Fraser, F., Bush, A. I., et al. (2005). Methionine regulates copper/hydrogen peroxide oxidation products of Abeta. Journal of Peptide Science, 11, 353–360.

    Article  PubMed  CAS  Google Scholar 

  205. Bush, A. I. (2000). Metals and neuroscience. Current Opinion in Chemical Biology, 4, 184–191.

    Article  PubMed  CAS  Google Scholar 

  206. Lynch, T., Cherny, R. A., & Bush, A. I. (2000). Oxidative processes in Alzheimer’s disease: The role of Aβ-metal interactions. Experimental Gerontology, 35, 445–451.

    Article  PubMed  CAS  Google Scholar 

  207. Gao, J., Yin, D. H., Yao, Y., Sun, H., Qin, Z., Schoneich, C., et al. (1998). Loss of conformational stability in calmodulin upon methionine oxidation. Biophysical Journal, 74, 1115–1134.

    Article  PubMed  CAS  Google Scholar 

  208. Squier, T. C., & Bigelow, D. J. (2000). Protein oxidation and age-dependent alterations in calcium homeostasis. Frontiers Bioscience, 5, D504–D526.

    Article  CAS  Google Scholar 

  209. Berlett, B. S., Levine, R. L., & Stadtman, E. R. (1998). Carbon dioxide stimulates peroxynitrite-mediated nitration of tyrosine residues and inhibits oxidation of methionine residues of glutamine synthetase: Both modifications mimic effects of adenylylation. Proceedings of the National Academy of Sciences of the United States of America, 95, 2784–2789.

    Article  PubMed  CAS  Google Scholar 

  210. Brot, N., & Weissbach, H. (1983). Biochemistry and physiological role of methionine sulfoxide residues in proteins. Archives of Biochemistry and Biophysics, 223, 271–281.

    Article  PubMed  CAS  Google Scholar 

  211. Chao, C. C., Ma, Y. S., & Stadtman, E. R. (1997). Modification of protein surface hydrophobicity and methionine oxidation by oxidative systems. Proceedings of the National Academy of Sciences of the United States of America, 94, 2969–2974.

    Article  PubMed  CAS  Google Scholar 

  212. Levine, R. L., Mosoni, L., Berlett, B. S., & Stadtman, E. R. (1996). Methionine residues as endogenous antioxidants in proteins. Proceedings of the National Academy of Sciences of the United States of America, 93, 15036–15040.

    Article  PubMed  CAS  Google Scholar 

  213. Vogt, W. (1995). Oxidation of methionyl residues in proteins: Tools, targets, and reversal. Free Radical Biology and Medicine, 18, 93–105.

    Article  PubMed  CAS  Google Scholar 

  214. von Eckardstein, A., Walter, M., Holz, H., Benninghoven, A., & Assmann, G. (1991). Site-specific methionine sulfoxide formation is the structural basis of chromatographic heterogeneity of apolipoproteins A-I, C-II, and C-III. Journal of Lipid Research, 32, 1465–1476.

    Google Scholar 

  215. Levine, R. L., Moskovitz, J., & Stadtman, E. R. (2000). Oxidation of methionine in proteins: Roles in antioxidant defense and cellular regulation. IUBMB Life, 50, 301–307.

    Article  PubMed  CAS  Google Scholar 

  216. Moskovitz, J., Flescher, E., Berlett, B. S., Azare, J., Poston, J. M., & Stadtman, E. R. (1998). Overexpression of peptide-methionine sulfoxide reductase in Saccharomyces cerevisiae and human T cells provides them with high resistance to oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 95, 14071–14075.

    Article  PubMed  CAS  Google Scholar 

  217. Tang, X. D., Daggett, H., Hanner, M., Garcia, M. L., McManus, O. B., Brot, N., et al. (2001). Oxidative regulation of large conductance calcium-activated potassium channels. Journal of General Physiology, 117, 253–274.

    Article  PubMed  CAS  Google Scholar 

  218. Assmann, A., Briviba, K., & Sies, H. (1998). Reduction of methionine selenoxide to selenomethionine by glutathione. Archives of Biochemistry and Biophysics, 349, 201–203.

    Article  PubMed  CAS  Google Scholar 

  219. Padmaja, S., Squadrito, G. L., Lemercier, J. N., Cueto, R., & Pryor, W. A. (1996). Rapid oxidation of DL-selenomethionine by peroxynitrite. Free Radical Biology and Medicine, 21, 317–322.

    Article  PubMed  CAS  Google Scholar 

  220. Amagase, H., Petesch, B. L., Matsuura, H., Kasuga, S., & Itakura, Y. (2001). Intake of garlic and its bioactive components. Journal of Nutrition, 131, 955S–962S.

    PubMed  CAS  Google Scholar 

  221. Corzo-Martinez, M., Corzo, N., & Villamiel, M. (2007). Biological Properties of Onions and Garlic. Trends in Food Science and Technology, 18, 609–625.

    Article  CAS  Google Scholar 

  222. Das, S. (2002). Garlic—a natural source of cancer preventive compounds. Asian Pacific Journal of Cancer Prevention, 3, 305–311.

    PubMed  Google Scholar 

  223. Chu, T. C., Ogidigben, M., Han, J. C., & Potter, D. E. (1993). Allicin-induced hypotension in rabbit eyes. Journal of Ocular Pharmacology, 9, 201–209.

    Article  PubMed  CAS  Google Scholar 

  224. Gebhardt, R., & Beck, H. (1996). Differential inhibitory effects of garlic-derived organosulfur compounds on cholesterol biosynthesis in primary rat hepatocyte cultures. Lipids, 31, 1269–1276.

    Article  PubMed  CAS  Google Scholar 

  225. Kaye, A. D., Nossaman, B. D., Ibrahim, I. N., Feng, C. J., McNamara, D. B., Agrawal, K. C., et al. (1995). Analysis of responses of allicin, a compound from garlic, in the pulmonary vascular bed of the cat and in the rat. European Journal of Pharmacology, 276, 21–26.

    Article  PubMed  CAS  Google Scholar 

  226. Makheja, A. N., & Bailey, J. M. (1990). Antiplatelet constituents of garlic and onion. Agents Actions, 29, 360–363.

    Article  PubMed  CAS  Google Scholar 

  227. Chung, L. Y. (2006). The antioxidant properties of garlic compounds: Allyl cysteine, alliin, allicin, and allyl disulfide. Journal of Medicinal Food, 9, 205–213.

    Article  PubMed  CAS  Google Scholar 

  228. Kumari, K., & Augusti, K. T. (1995). Antidiabetic effects of S-methylcysteine sulphoxide on alloxan diabetes. Planta Medica, 61, 72–74.

    Article  PubMed  CAS  Google Scholar 

  229. Kumari, K., & Augusti, K. T. (2007). Lipid lowering effect of S-methyl cysteine sulfoxide from Allium cepa Linn in high cholesterol diet fed rats. Journal of Ethnopharmacology, 109, 367–371.

    Article  PubMed  CAS  Google Scholar 

  230. Kumari, K., & Augusti, K. T. (2002). Antidiabetic and antioxidant effects of S-methyl cysteine sulfoxide isolated from onions (Allium cepa Linn) as compared to standard drugs in alloxan diabetic rats. Indian Journal of Experimental Biology, 40, 1005–1009.

    PubMed  CAS  Google Scholar 

  231. Kawamori, T., Tanaka, T., Ohnishi, M., Hirose, Y., Nakamura, Y., Satoh, K., et al. (1995). Chemoprevention of azoxymethane-induced colon carcinogenesis by dietary feeding of S-methyl methane thiosulfonate in male F344 rats. Cancer Research, 55, 4053–4058.

    PubMed  CAS  Google Scholar 

  232. Sugie, S., Okamoto, K., Ohnishi, M., Makita, H., Kawamori, T., Watanabe, T., et al. (1997). Suppressive effects of S-methyl methanethiosulfonate on promotion stage of diethylnitrosamine-initiated and phenobarbital-promoted hepatocarcinogenesis model. Japanese Journal of Cancer Research, 88, 5–11.

    PubMed  CAS  Google Scholar 

  233. Nakamura, Y. K., Kawai, K., Furukawa, H., Matsuo, T., Shimoi, K., Tomita, I., et al. (1997). Suppressing effects of S-methyl methanethiosulfonate and diphenyl disulfide on mitomycin C-induced somatic mutation and recombination in Drosophila melanogaster and micronuclei in mice. Mutation Research, 385, 41–46.

    Article  PubMed  CAS  Google Scholar 

  234. Nagira, T., Narisawa, J., Teruya, K., Katakura, Y., Shim, S. Y., Kusumoto, K., et al. (2002). Suppression of UVC-induced cell damage and enhancement of DNA repair by the fermented milk, Kefir. Cytotechnology, 40, 125–137.

    Article  PubMed  CAS  Google Scholar 

  235. Richmond, V. L. (1986). Incorporation of methylsulfonylmethane sulfur into guinea pig serum proteins. Life Science, 39, 263–268.

    Article  CAS  Google Scholar 

  236. Hucker, H. B., Ahmad, P. M., Miller, E. A., & Brobyn, R. (1966). Metabolism of dimethyl sulfoxide to dimethyl sulfone in the rat and man. Nature, 209, 619–620.

    Article  PubMed  CAS  Google Scholar 

  237. Otsuki, S., Qian, W., Ishihara, A., & Kabe, T. (2002). Elucidation of dimethylsulfone metabolism in rat using a 35S radioisotope tracer method. Nutrition Research, 22, 313–322.

    Article  CAS  Google Scholar 

  238. Magnuson, B. A., Appleton, J., & Ames, G. B. (2007). Pharmacokinetics and distribution of [35S]methylsulfonylmethane following oral administration to rats. Journal of Agricultural and Food Chemistry, 55, 1033–1038.

    Article  PubMed  CAS  Google Scholar 

  239. Egorin, M. J., Rosen, D. M., Sridhara, R., Sensenbrenner, L., & Cottler-Fox, M. (1998). Plasma concentrations and pharmacokinetics of dimethylsulfoxide and its metabolites in patients undergoing peripheral-blood stem-cell transplants. Journal of Clinical Oncology, 16, 610–615.

    PubMed  CAS  Google Scholar 

  240. Engelke, U. F., Tangerman, A., Willemsen, M. A., Moskau, D., Loss, S., Mudd, S. H., et al. (2005). Dimethyl sulfone in human cerebrospinal fluid and blood plasma confirmed by one-dimensional (1)H and two-dimensional (1)H-(13)C NMR. NMR in Biomedicine, 18, 331–336.

    Article  PubMed  CAS  Google Scholar 

  241. Lin, A., Nguy, C. H., Shic, F., & Ross, B. D. (2001). Accumulation of methylsulfonylmethane in the human brain: Identification by multinuclear magnetic resonance spectroscopy. Toxicology Letters, 123, 169–177.

    Article  PubMed  CAS  Google Scholar 

  242. Rose, S. E., Chalk, J. B., Galloway, G. J., & Doddrell, D. M. (2000). Detection of dimethyl sulfone in the human brain by in vivo proton magnetic resonance spectroscopy. Magnetic Resonance Imaging, 18, 95–98.

    Article  PubMed  CAS  Google Scholar 

  243. Cronin, J. R. (1999). Nutraceutical of the next century? Alternative and Complementary Therapies, 5, 386–390.

    Article  Google Scholar 

  244. Usha, P. R., & Naidu, M. U. (2004). Randomised, double-blind, parallel, placebo-controlled study of oral glucosamine, methylsulfonylmethane and their combination in osteoarthritis. Clinical Drug Investigation, 24, 353–363.

    Article  PubMed  CAS  Google Scholar 

  245. Moskovitz, J., Berlett, B. S., Poston, J. M., & Stadtman, E. R. (1997). The yeast peptide-methionine sulfoxide reductase functions as an antioxidant in vivo. Proceedings of the National Academy of Sciences of the United States of America, 94, 9585–9589.

    Article  PubMed  CAS  Google Scholar 

  246. Ruan, H., Tang, X. D., Chen, M. L., Joiner, M. L., Sun, G., Brot, N., et al. (2002). High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proceedings of the National Academy of Sciences of the United States of America, 99, 2748–2753.

    Article  PubMed  CAS  Google Scholar 

  247. Moskovitz, J., Rahman, M. A., Strassman, J., Yancey, S. O., Kushner, S. R., Brot, N., et al. (1995). Escherichia coli peptide methionine sulfoxide reductase gene: Regulation of expression and role in protecting against oxidative damage. Journal of Bacteriology, 177, 502–507.

    PubMed  CAS  Google Scholar 

  248. St. John, G., Brot, N., Ruan, J., Erdjument-Bromage, H., Tempst, P., Weissbach, H., et al. (2001). Peptide methionine sulfoxide reductase from Escherichia coli and Mycobacterium tuberculosis protects bacteria against oxidative damage from reactive nitrogen intermediates. Proceedings of the National Academy of Sciences of the United States of America, 98, 9901–9906.

    Article  PubMed  CAS  Google Scholar 

  249. Moskovitz, J., Bar-Noy, S., Williams, W. M., Requena, J., Berlett, B. S., & Stadtman, E. R. (2001). Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proceedings of the National Academy of Sciences of the United States of America, 98, 12920–12925.

    Article  PubMed  CAS  Google Scholar 

  250. Sattler, W., Christison, J., & Stocker, R. (1995). Cholesterylester hydroperoxide reducing activity associated with isolated high- and low-density lipoproteins. Free Radical Biology and Medicine, 18, 421–429.

    Article  PubMed  CAS  Google Scholar 

  251. Maier, K., Leuschel, L., & Costabel, U. (1991). Increased levels of oxidized methionine residues in bronchoalveolar lavage fluid proteins from patients with idiopathic pulmonary fibrosis. American Review of Respiratory Disease, 143, 271–274.

    PubMed  CAS  Google Scholar 

  252. Petropoulos, I., Mary, J., Perichon, M., & Friguet, B. (2001). Rat peptide methionine sulphoxide reductase: Cloning of the cDNA, and down-regulation of gene expression and enzyme activity during aging. Biochemical Journal, 355, 819–825.

    PubMed  CAS  Google Scholar 

  253. Gabbita, S. P., Aksenov, M. Y., Lovell, M. A., & Markesbery, W. R. (1999). Decrease in peptide methionine sulfoxide reductase in Alzheimer’s disease brain. Journal of Neurochemistry, 73, 1660–1666.

    Article  PubMed  CAS  Google Scholar 

  254. Michaelis, M. L., Bigelow, D. J., Schoneich, C., Williams, T. D., Ramonda, L., Yin, D., et al. (1996). Decreased plasma membrane calcium transport activity in aging brain. Life Science, 59, 405–412.

    Article  CAS  Google Scholar 

  255. Wells-Knecht, M. C., Lyons, T. J., McCance, D. R., Thorpe, S. R., & Baynes, J. W. (1997). Age-dependent increase in ortho-tyrosine and methionine sulfoxide in human skin collagen is not accelerated in diabetes. Evidence against a generalized increase in oxidative stress in diabetes. Journal of Clinical Investigation, 100, 839–846.

    Article  PubMed  CAS  Google Scholar 

  256. Gellman, S. H. (1991). On the role of methionine residues in the sequence-independent recognition of nonpolar protein surfaces. Biochemistry, 30, 6633–6636.

    Article  PubMed  CAS  Google Scholar 

  257. Armitage, B. (1998). Photocleavage of nucleic acids. Chemical Reviews, 98, 1171–1200.

    Article  PubMed  CAS  Google Scholar 

  258. Mayo, D. J., Turner, D. P., Zucconi, B. E., & Predecki, A. H. (2007). DNA cleavage by photolysis of aryl sulfoxides. Bioorganic & Medicinal Chemistry Letters, 17, 6116–6118.

    Article  CAS  Google Scholar 

  259. Wauchope, O. R., Shakya, S., Sawwan, N., Liebman, J. F., & Greer, A. (2007). Photocleavage of plasmid DNA by dibenzothiophene S-oxide under anaerobic conditions. Journal of Sulfur Chemistry, 28, 11–16.

    Article  CAS  Google Scholar 

  260. Drake, E. N. (2006). Cancer chemoprevention: Selenium as a prooxidant, not an antioxidant. Medical Hypotheses, 67, 318–322.

    Article  PubMed  CAS  Google Scholar 

  261. Poerschke, R. L., Franklin, M. R., & Moos, P. J. (2008). Modulation of redox status in human lung cell lines by organoselenocompounds: Selenazolidines, selenomethionine, and methylseleninic acid. Toxicology in Vitro, 22, 1761–1767.

    Article  PubMed  CAS  Google Scholar 

  262. Singh, U., Null, K., & Sinha, R. (2008). In vitro growth inhibition of mouse mammary epithelial tumor cells by methylseleninic acid: Involvement of protein kinases. Molecular Nutrition & Food Research, 52, 1281–1288.

    Article  CAS  Google Scholar 

  263. Gundimeda, U., Schiffman, J. E., Chhabra, D., Wong, J., Wu, A., & Gopalakrishna, R. (2008). Locally generated methylseleninic acid induces specific inactivation of protein kinase C isoenzymes. The Journal of Biological Chemistry, 283, 34519–34531.

    Article  PubMed  CAS  Google Scholar 

  264. Li, G.-H., Hu, H., Jiang, C., Schuster, T., & Lü, J. (2007). Differential involvement of reactive oxygen species in apoptosis induced by two classes of selenium compounds in human prostate cancer cells. International Journal of Cancer, 120, 2034–2043.

    Article  CAS  Google Scholar 

  265. Li, G.-x., Lee, H.-J., Wang, Z., Hu, H., Liao, J. D., Watts, J. C., et al. (2008). Superior in vivo inhibitory efficacy of methylseleninic acid against human prostate cancer over selenomethionine or selenite. Carcinogenesis, 29, 1005–1012.

    Article  PubMed  CAS  Google Scholar 

  266. Krause, R. J., Glocke, S. C., Sicuri, A. R., Ripp, S. L., & Elfarra, A. A. (2006). Oxidative metabolism of seleno-L-methionine to L-methionine selenoxide by flavin-containing monooxygenases. Chemical Research in Toxicology, 19, 1643–1649.

    Article  PubMed  CAS  Google Scholar 

  267. Schrauzer, G. N. (2000). Selenomethionine: A review of its nutritional significance, metabolism and toxicity. Journal of Nutrition, 130, 1653–1656.

    PubMed  CAS  Google Scholar 

  268. Krause, R. J., & Elfarra, A. A. (2009). Reduction of L-methionine selenoxide to seleno-L-methionine by endogenous thiols, ascorbic acid, or methimazole. Biochemical Pharmacology, 77, 134–140.

    Article  PubMed  CAS  Google Scholar 

  269. Kajander, E. O., Harvima, R. J., Eloranta, T. O., Martikainen, H., Kantola, M., Karenlampi, S. O., et al. (1991). Metabolism, cellular actions, and cytotoxicity of selenomethionine in cultured cells. Biological Trace Element Research, 28, 57–68.

    Article  PubMed  CAS  Google Scholar 

  270. Ziegler, D. M., Graf, P., Poulsen, L. L., Stahl, W., & Sies, H. (1992). NADPH-dependent oxidation of reduced ebselen, 2-selenylbenzanilide, and of 2-(methylseleno)benzanilide catalyzed by pig liver flavin-containing monooxygenase. Chemical Research in Toxicology, 5, 163–166.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia L. Brumaghim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramoutar, R.R., Brumaghim, J.L. Antioxidant and Anticancer Properties and Mechanisms of Inorganic Selenium, Oxo-Sulfur, and Oxo-Selenium Compounds. Cell Biochem Biophys 58, 1–23 (2010). https://doi.org/10.1007/s12013-010-9088-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-010-9088-x

Keywords

Navigation