Skip to main content
Log in

Erythrocyte Membrane Properties in Patients with Essential Hypertension

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In spite of the extensive research efforts that have been conducted over the last decades, it is still very difficult to point out genetic determinants or environmental conditions responsible for the development of essential hypertension. We searched for differences in the RBC membrane skeleton structure and O2 membrane permeability between RBCs from patients with both essential arterial hypertension and hypercholesterolemia, from patients having only hypercholesterolemia and from healthy donors. The topography of RBCs and the content of various hemoglobin forms were detected using atomic force microscopy and Mössbauer spectroscopy, respectively. We found that the membrane skeleton of RBCs from healthy donors displayed a well-known honeycomb pattern, whereas in patients with essential hypertension and/or hypercholesterolemia, who had never received anti-hypertensive therapy, it displayed a corncob pattern. Hypertensive RBCs had an oval shape and the average lateral to longitudinal diameter ratio for the changed cells (about 70 %) did not exceed 0.80. We observed that after the incubation of RBCs under high nitrogen (low O2) pressure at room temperature and then their transfer into 85 K, a content of oxyHb (deoxyHbOH) already after 1 h reached a stable level of about 85 ± 3 % (15 ± 3 %) in hypertensives, whereas in healthy individuals it showed a decrease for deoxyHbOH and an increase for oxyHb, which stabilized at a level of about 81 ± 5 % and 19 ± 5 %, respectively, only after 9 h. Quantitative analysis of the Δ(oxyHb) change estimated as the difference between the oxyHb level measured after 9 and 2 h at 85 K under low N2 pressure (to slow down oxyHb formation) was significantly higher in normotensives than in hypertensive patients with or without hypercholesterolemia, 19.9 versus −4.2, p < 0.02. Our findings indicate an impaired oxygen release by Hb in RBCs of patients with hypertension under low oxygen pressure which if present in vivo may cause hypoxemia and, in turn, further increase of blood pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zanchetti, A. (2005). The basic importance of the physiological approach in clinical medicine: The experience in the area of hypertension. Archives Italiennes de Biologie, 143, 97–102.

    PubMed  CAS  Google Scholar 

  2. Lee, A. J. (1997). The role of rheological and haemostatic factors in hypertension. Journal of Human Hypertension, 11(12), 767–776.

    Article  PubMed  CAS  Google Scholar 

  3. Michalska-Małecka, K., & Słowińska-Łożyńska, L. (2012). Aggregation and deformability of erythrocytes in primary open-angle glaucoma (POAG); the assessment of arterial hypertension. Clinical Hemorheology and Microcirculation, 51(4), 277–285.

    PubMed  Google Scholar 

  4. Velcheva, I., Antonova, N., Titianova, E., Damianov, P., Dimitrov, N., & Ivanov, I. (2006). Hemorheological parameters in correlation with the risk factors for carotid atherosclerosis. Clinical Hemorheology and Microcirculation, 35, 195–198.

    PubMed  Google Scholar 

  5. Baskurt, O. K., Yalcin, O., & Meiselman, H. J. (2004). Hemorheology and vascular control mechanisms. Clinical Hemorheology and Microcirculation, 30, 169–178.

    PubMed  Google Scholar 

  6. Lee, S. S., Kim, N. J., Sun, K., Dobbe, J. G., Hardeman, M. R., Antaki, J. F., et al. (2006). Association between arterial stiffness and the deformability of red blood cells (RBCs). Clinical Hemorheology and Microcirculation, 3, 475–481.

    Google Scholar 

  7. Roggenkamp, H. G., Jung, F., Nüttgens, H. P., Kiesewetter, H., Ringelstein, E. B., & Schneider, R. (1986). Erythrocyte rigidity in healthy patients and patients with cardiovascular disease risk factors. Klin Wochenschr, 64(20), 1091–1096.

    PubMed  CAS  Google Scholar 

  8. Cicco, G., Vicenti, P., Stingi, G. D., Tarallo, M. S., & Pirrelli, A. (1999). Hemorheology in complicated hypertension. Clinical Hemorheology and Microcirculation, 21(3–4), 315–319.

    PubMed  CAS  Google Scholar 

  9. Konstantinova, E., Ivanova, L., Tolstaya, T., & Mironova, E. (2006). Rheological properties of blood and parameters of platelets aggregation in arterial hypertension. Clinical Hemorheology and Microcirculation, 35(1–2), 135–138.

    PubMed  Google Scholar 

  10. Forconi, S., Guerrini, M., Pieragalli, D., & Acciavatti, A. (1981). Viscosimetria ematica approccio metodologio. La Ricerca in clinica e in laboratorio, 11, 35–38.

    Google Scholar 

  11. Turchetti, V., Bellini, M. A., Guerrini, M., & Forconi, S. (1999). Evaluation of hemorheological parameters and red cell morphology in hypertension. Clinical Hemorheology and Microcirculation, 21, 285–289.

    PubMed  CAS  Google Scholar 

  12. Tikhomirova, I. A., Oslyakova, A. O., & Mikhailova, S. G. (2011). Microcirculation and blood rheology in patients with cerebrovascular disorders. Clinical Hemorheology and Microcirculation, 49(1–4), 295–305.

    PubMed  Google Scholar 

  13. Liu, S. C., Windisch, P., Kim, S., & Palek, J. (1984). Oligomeric states of spectrin in normal erythrocyte membranes: Biochemical and electron microscopic studies. Cell, 37, 587–594.

    Article  PubMed  CAS  Google Scholar 

  14. Byers, T. J., & Branton, D. (1985). Visualization of the protein associations in the erythrocyte membrane skeleton. Proceedings of the National Academy of Sciences of the United States of America, 82, 6153–6157.

    Article  PubMed  CAS  Google Scholar 

  15. Stabach, P. R., Simonović, I., Ranieri, M. A., Aboodi, M. S., Steitz, T. A., Simonović, M., et al. (2009). The structure of the ankyrin-binding site of beta-spectrin reveals how tandem spectrin-repeats generate unique ligand-binding properties. Blood, 113, 5377–5384.

    Article  PubMed  CAS  Google Scholar 

  16. Sung, L. A., & Vera, C. (2003). Protofilament and hexagon: A three-demensional mechanical model for the junctional complex in the erythrocyte membrane skeleton. Annals of Biomedical Engineering, 31, 1314–1326.

    Article  PubMed  Google Scholar 

  17. Anong, W. A., Franco, T., Chu, H., Weis, T. L., Devlin, E. E., Bodine, D. M., et al. (2009). Adducin forms a bridge between the erythrocyte membrane and its cytoskeleton and regulates membrane cohesion. Blood, 114, 1904–1912.

    Article  PubMed  CAS  Google Scholar 

  18. Liu, J., Guo, X., Mohandas, N., Chasis, J. A., & An, X. (2010). Membrane remodeling during reticulocyte maturation. Blood, 115, 2021–2027.

    Article  PubMed  CAS  Google Scholar 

  19. Salomao, M., Zhang, X., Yang, Y., Lee, S., Hartwing, J. H., Chasis, J. A., et al. (2008). Protein 4.1 Rdependent multi-protein complex: New insights into the structural organization of the red blood cell membrane. Proceedings of the National Academy of Sciences of the United States of America, 105, 8026–8031.

    Article  PubMed  CAS  Google Scholar 

  20. Khan, A. A., Hanada, T., Mohseni, M., Jeong, J. J., Zeng, L., Gaetani, M., et al. (2008). Dematin and adducin provide a novel link between the spectrin cytoskeleton and human erythrocyte membrane by directly interacting with glucose transporter-1. Journal of Biological Chemistry, 283, 14600–14609.

    Article  PubMed  CAS  Google Scholar 

  21. Thevenin, B. J., & Low, P. S. (1990). Kinetics and regulation of the ankyrin-band 3 interaction of the human red blood cell membrane. Journal of Biological Chemistry, 265, 16166–16172.

    PubMed  CAS  Google Scholar 

  22. Hanspal, M., Golan, D. E., Smockova, Y., Yi, S. J., Cho, M. R., Liu, S. C., et al. (1998). Temporal synthesis of band 3 oligomers during terminal maturation of mouse erythroblasts: Dimers and tetramers exist in the membrane as preformed stable species. Blood, 92, 329–338.

    PubMed  CAS  Google Scholar 

  23. Che, A., Morrison, I. E., Pan, R., & Cherry, R. J. (1997). Restriction by ankyrin of band 3 rotational mobility in human erythrocyte membranes and reconstituted lipid vesicles. Biochemistry, 36, 9588–9595.

    Article  PubMed  CAS  Google Scholar 

  24. Low, P., Waugh, S. M., Zinke, K., & Drenckhahn, D. (1985). The role of hemoglobin denaturation and band 3 clustering in red blood cell aging. Science, 227, 531–533.

    Article  PubMed  CAS  Google Scholar 

  25. Bennett, V. (1982). The molecular basis for membrane–cytoskeleton association in human erythrocytes. Journal of Cellular Biochemistry, 18, 49–65.

    Article  PubMed  CAS  Google Scholar 

  26. Liu, S. C., Derick, L. H., & Palek, J. (1987). Visualization of the hexagonal lattice in the erythrocyte membrane skeleton. Journal of Cell Biology, 104, 527–536.

    Article  PubMed  CAS  Google Scholar 

  27. Walder, J. A., Chatterjee, R., Steck, T. L., Low, P. S., Musso, G. F., Kaiser, E. T., et al. (1984). The interaction of hemoglobin with the cytoplasmic domain of band 3 of the human erythrocyte membrane. Journal of Biological Chemistry, 259, 10238–10246.

    PubMed  CAS  Google Scholar 

  28. Low, P. S., Rathinavelu, P., & Harrison, M. L. (1993). Regulation of glycolysis via reversible enzyme binding to the membrane band 3. Journal of Biological Chemistry, 268, 14627–14631.

    PubMed  CAS  Google Scholar 

  29. Zhang, D., Kiyatkin, A., Bolin, J. T., & Low, P. S. (2000). Crystallographic structure and functional interpretation of the cytoplasmic domain of erythrocyte membrane band 3. Blood, 96, 2925–2933.

    PubMed  CAS  Google Scholar 

  30. Chu, H., Breite, A., Ciraolo, P., Franco, R. S., & Philip, S. (2008). Low Characterization of the deoxyhemoglobin binding site on human erythrocyte band 3: Implications for O2 regulation of erythrocyte properties. Blood, 111, 932–938.

    Article  PubMed  CAS  Google Scholar 

  31. Tanner, M. J. (1997). The structure and function of band 3 (AE1): Recent developments [review]. Molecular Membrane Biology, 14, 155–165.

    Article  PubMed  CAS  Google Scholar 

  32. Bruce, L. J., Beckmann, R., Ribeiro, M. L., Peters, L. L., Chasis, J. A., Delaunay, J., et al. (2003). Aband 3-based macrocomplex of integral and peripheral proteins in the RBC membrane. Blood, 101, 4180–4188.

    Article  PubMed  CAS  Google Scholar 

  33. Buchwald, H., Menchaca, H. J., Michalek, V. N., Rohde, T. D., Hunninghake, B. D., & O’Dea, T. J. (2000). Plasma cholesterol: An influencing factor in red blood cell oxygen release and cellular oxygen availability. Journal of the American College of Surgeons, 191, 490–497.

    Article  PubMed  CAS  Google Scholar 

  34. Buchwald, H., O’Dea, T. J., Menchaca, H. J., Michalek, V. N., & Rohde, T. D. (2000). Effect of plasma cholesterol on red blood cell oxygen transport. Clinical and Experimental Pharmacology and Physiology, 27, 951–955.

    Article  PubMed  CAS  Google Scholar 

  35. Subczynski, W. K., Wisniewska, A., Hyde, J. S., & Kusumi, A. (2007). Three-dimensional dynamic structure of the lipid-ordered domain in lipid membranes as examined by Pulse_EPR oxygen probin. Biophysical Journal, 92, 1573–1584.

    Article  PubMed  CAS  Google Scholar 

  36. Lechter, R. L., Chien, S., Pickering, T. G., Sealey, J. E., & Laragh, J. H. (1981). Direct relationship between blood pressure and blood viscosity in normal and hypertensive subjects. Role of fibrinogen concentration. American Journal of Medicine, 70, 1195–1202.

    Article  Google Scholar 

  37. Lowe, G. D. O., Lee, A. J., Rumley, A., Smith, W. C., & Tustall-Pedoe, H. (1992). Epidemiology of hematocrit, white cell count, red cell aggregation and fibrinogen: The Glasgow MONICA study. Clinical Hemorheology, 12, 535–544.

    Google Scholar 

  38. Lopes de Almeida, J. P., Freitas-Santos, T., & Saldanha, C. (2012). Erythrocyte deformability dependence on band 3 protein in an in vitro model of hyperfibrinogenemia. Clinical Hemorheology and Microcirculation, 50, 213–219.

    PubMed  CAS  Google Scholar 

  39. Takeuchi, M., Miyamoto, H., Sako, Y., Komizu, H., & Kusumi, A. (1998). Structure of the Erythrocyte Membrane Skeleton as Observed by Atomic Force Microscopy. Biophysical Journal, 74, 2171–2183.

    Article  PubMed  CAS  Google Scholar 

  40. Nowakowski, R., Luckham, P., & Winlove, P. (2001). Imaging erythrocytes under physiological conditions by atomic force microscopy. Biochimica et Biophysica Acta, 1514, 170–176.

    Article  PubMed  CAS  Google Scholar 

  41. Lang, G., & Marshall, W. (1966). Mössbauer effect in some hemoglobin compounds. Proceedings of the Physical Society, 87, 3–34.

    Article  CAS  Google Scholar 

  42. Burda, K., Hrynkiewicz, A., Kołoczek, H., Stanek, J., & Strzałka, K. (1995). Mixed valence state in ironporphyrin aggregates. Biochimica et Biophysica Acta, 1244, 345–350.

    Article  PubMed  Google Scholar 

  43. Baskurt, O. K., Boynard, M., Cokelet, G. C., Connes, P., Cooke, B. M., Forconi, S., et al. (2009). International Expert Panel for Standardization of Hemorheological Methods. New guidelines for hemorheological laboratory techniques. Clinical Hemorheology and Microcirculation, 42, 75–97.

    PubMed  Google Scholar 

  44. Burda, K., Lekki, J., Dubiel, S., Cieślak, J., Lekka, M., & Stanek, J. (2002). Molecular mechanism of hemolysis caused by organometallic compounds. Applied Organometallic Chemistry, 10, 148–154.

    Google Scholar 

  45. Rancourt, D. G., & Ping, J. Y. (1991). Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in Mössbauer spectroscopy. Nuclear Instruments and Methods, B58, 85–87.

    CAS  Google Scholar 

  46. Razavian, S. M., Pino, M. D., Simon, A., & Leverson, I. (1992). Increase in erythrocyte disaggregation shear stress in hypertension. Hypertension, 20, 247–252.

    Article  PubMed  CAS  Google Scholar 

  47. DeSouza, C. A., Dengel, R. F., Macko, R. F., Cox, K., & Seals, D. R. (1997). Elevated levels of circulating cell adhesion molecules in uncomplicated essential hypertension. American Journal of Hypertension, 10, 1335–1341.

    PubMed  CAS  Google Scholar 

  48. Fornal, M., Korbut, R. A., & Grodzicki, T. (2011). Relevance of erythrocyte deformability to the concentration of soluble cell adhesion molecules and glomerular filtration rate in patients with untreated essential hypertension. Clinical Hemorheology and Microcirculation, 49, 323–329.

    PubMed  Google Scholar 

  49. Swihart, A. H., Mikrut, J. M., Ketterson, J. B., & MacDonald, R. C. (2001). Atomic force microscopy of the erythrocyte membrane skeleton. Journal of Microscopy, 204, 212–225.

    Article  PubMed  CAS  Google Scholar 

  50. Ursitti, J. A., & Fowler, V. M. (1994). Immunolocalization of tropomodulin, tropomyosin and actin in spread human erythrocyte skeletons. Journal of Cell Science, 107, 1633–1639.

    PubMed  CAS  Google Scholar 

  51. Bennett, V. (1989). The spectrin-actin junction of erythrocyte membrane skeletons. Biochimica et Biophysica Acta, 98(1989), 107–121.

    Article  Google Scholar 

  52. Kodippili, G. C., Spector, J., Hale, J., Giger, K., Hughes, M. R., McNagny, K. M., et al. (2012). Analysis of the Mobilities of Band 3 Populations Associated with Akyrin Protein and Junctional Complexes in Intact Murine Eruthrocytes. Journal of Biological Chemistry, 287, 4129–4138.

    Article  PubMed  CAS  Google Scholar 

  53. Chetrite, G., & Cassoly, R. (1985). Affinity of hemoglobin for the cytoplasmic fragment of human erythrocyte membrane band 3. Equilibrium measurements at physiological pH using matrix-bound proteins: The effects of ionic strength, deoxygenation and of 2,3-diphosphoglycerate. Journal of Molecular Biology, 185, 639–644.

    Article  PubMed  CAS  Google Scholar 

  54. Rybicki, A. C., Qiu, J. J., Musto, S., Rosen, N. L., Nagel, R. L., & Schwartz, R. S. (1993). Human erythrocyte protein 4.2 deficiency associated with hemolytic anemia and a homozygous 40 glutamic acid—.lysine substitution in the cytoplasmic domain of band 3 (band 3 Montefiore). Blood, 81, 2155–2165.

    PubMed  CAS  Google Scholar 

  55. Inoue, T., Kanzaki, A., Kaku, M., Yawata, A., Takezono, M., Okamoto, N., et al. (1998). Homozygous missense mutation (band 3 Fukuoka:G130R):a mild form of hereditary spherocytosis with nearnormal band 3 content and minimal changes of membrane ultrastructure despite moderate protein 4.2 deficiency. British Journal of Haematology, 102, 932–939.

    Article  PubMed  CAS  Google Scholar 

  56. Jarolim, P., Murray, J. L., Rubin, H. L., Taylor, W. M., Prchal, J. T., Ballas, S. K., et al. (1996). Characterization of 13 novel band 3 gene defects in hereditary spherocytosis with band 3 deficiency. Blood, 88, 4366–4374.

    PubMed  CAS  Google Scholar 

  57. Jung, F., Kolepke, W., Spitzer, S., Kiesewetter, H., Ruprecht, K. W., Bach, R., et al. (1993). Primary and secondary microcirculatory disorders in essential hypertension. Journal of Clinical Investigation, 71, 132–138.

    CAS  Google Scholar 

  58. Grocott, M. P., Martin, S. D., Levett, D. Z., McMorrow, R., Windsor, J., & Montgomery, H. E. (2009). Arterial blood gases and oxygen content in climbers on Mount Everest. New England Journal of Medicine, 360, 140–149.

    Article  PubMed  CAS  Google Scholar 

  59. Rhodes, H. L., Chesterman, K., Chan, C. W., Collins, P., Kewley, E., Pattinson, K. T., et al. (2011). Systemic blood pressure, arterial stiffness and pulse waveform analysis at altitude. Journal of the Royal Army Medical Corps, 157, 110–113.

    Article  PubMed  CAS  Google Scholar 

  60. Chen, W., Liu, Q., Wang, H., Chen, W., Johnson, R. J., Dong, X., et al. (2010). Prevalence and risk factors of chronic kidney disease: A population study in the Tibetan population. Nephrology, Dialysis, Transplantation, 26, 1592–1599.

    Article  PubMed  Google Scholar 

  61. Morgan, B. J., Crabtree, D. C., Palta, M., & Skatrud, J. B. (1995). Combined hypoxia and hypercapnia evokes long-lasting sympathetic activation in humans. Journal of Applied Physiology, 79, 205–213.

    PubMed  CAS  Google Scholar 

  62. Morgan, B. J. (2007). Vascular consequences of intermittent hypoxia. Advances in Experimental Medicine and Biology, 618, 69–84.

    Article  PubMed  Google Scholar 

  63. Binggeli, C., Sudano, I., Corti, R., Spieker, L., Jenni, R., & Lüscher, T. F. (2010). Spontanous periodic breathing is associated with sympathetic hyperreactivity and baroreceptor dysfunction in hypertension. Journal of Hypertension, 985, 985–992.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Krzysztof Matlak and Magdalena Szczerbowska-Boruchowska from the AGH-University of Science and Technology in Krakow (Poland), who designed and constructed the cryostat for Mössbauer spectroscopy and helped by some of the statistical analyses, respectively. The study was approved by the Bioethics Committee of Jagiellonian University (KBET/11/B/2009). This study was partially supported by the Grant of Polish Ministry of Science and Education N-N-402-471337, NCN (2011-2013) No 2011/01/N/NZ5/00919 and DS No 11.11.220.01 WFiIS AGH Kraków.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tomasz Grodzicki or Kvetoslava Burda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaczmarska, M., Fornal, M., Messerli, F.H. et al. Erythrocyte Membrane Properties in Patients with Essential Hypertension. Cell Biochem Biophys 67, 1089–1102 (2013). https://doi.org/10.1007/s12013-013-9613-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9613-9

Keywords

Navigation