Skip to main content

Advertisement

Log in

Pro-Apoptotic Effects of the Novel Tangeretin Derivate 5-Acetyl-6,7,8,4′-Tetramethylnortangeretin on MCF-7 Breast Cancer Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Citrus polymethoxyflavone tangeretin (5,6,7,8,4′-pentamethoxyflavone, TAN) displays multiple biological activities, but previous reports showed that TAN failed to induce MCF-7 human breast cancer cells apoptosis. Herein, we prepared 5-acetyl-6,7,8,4′-tetramethylnortangeretin (5-ATAN), and evaluated its cytotoxicity on MCF-7 cells. 5-ATAN revealed stronger cytotoxicity than that of parent TAN in the growth inhibition of MCF-7 cells. 5-ATAN induced apoptosis via both caspase-independent and -dependent pathways, in which 5-ATAN induced the translocation of apoptosis inducing factor and phosphorylation of H2AX as well as poly (ADP-ribose) polymerase cleavage, caspase-3 activation. However, 5-ATAN did not affect extrinsic markers caspase-8, BID, and FADD. Further, 5-ATAN induced the loss of mitochondrial membrane potential (Δψm) by regulating the Bax/Bcl-2 ratio. Loss of Δψm led to the mitochondrial release of cytochrome c which triggered activation of caspase-9. In conclusion, these data indicate that 5-ATAN plays pro-apoptotic cytotoxic roles in MCF-7 cells through both caspase-dependent intrinsic apoptosis and caspase-independent apoptosis pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Danihelová, M., & Šturdík, E. (2011). Flavonoid natural sources and their importance in the human diet. Potravinarstvo, 5, 12–24.

    Article  Google Scholar 

  2. Maras, J. E., Talegawkar, S. A., Qiao, N., Lyle, B., Ferrucci, L., & Tucker, K. L. (2011). Flavonoid intakes in the Baltimore Longitudinal Study of Aging. Journal of food composition and analysis: An official publication of the United Nations University, International Network of Food Data Systems, 24, 1103–1109.

    Article  CAS  Google Scholar 

  3. Li, S., Pan, M.-H., Lo, C.-Y., Tan, D., Wang, Y., Shahidi, F., et al. (2009). Chemistry and health effects of polymethoxyflavones and hydroxylated polymethoxyflavones. Journal of Functional Foods, 1, 2–12.

    Article  CAS  Google Scholar 

  4. Assini, J. M., Mulvihill, E. E., & Huff, M. W. (2013). Citrus flavonoids and lipid metabolism. Current Opinion in Lipidology, 24, 34–40.

    Article  PubMed  CAS  Google Scholar 

  5. Park, E. J., & Pezzuto, J. M. (2012). Flavonoids in cancer prevention. Anti-Cancer Agents in Medicinal Chemistry, 12, 836–851.

    Article  PubMed  CAS  Google Scholar 

  6. Romagnolo, D. F., & Selmin, O. I. (2012). Flavonoids and cancer prevention: A review of the evidence. Journal of nutrition in gerontology and geriatrics, 31, 206–238.

    Article  PubMed  Google Scholar 

  7. Mulvihill, E. E., & Huff, M. W. (2012). Citrus flavonoids and the prevention of atherosclerosis. Cardiovascular & Hematological Disorders Drug Targets, 12, 84–91.

    Article  CAS  Google Scholar 

  8. Meiyanto, E., Hermawan, A., & Anindyajati, (2012). Natural products for cancer-targeted therapy: citrus flavonoids as potent chemopreventive agents. Asian Pacific Journal of Cancer Prevention: APJCP, 13, 427–436.

    Article  PubMed  Google Scholar 

  9. Miyata, Y., Tanaka, H., Shimada, A., Sato, T., Ito, A., Yamanouchi, T., et al. (2011). Regulation of adipocytokine secretion and adipocyte hypertrophy by polymethoxyflavonoids, nobiletin and tangeretin. Life Sciences, 88, 613–618.

    Article  PubMed  CAS  Google Scholar 

  10. Arafa el, S. A., Zhu, Q., Barakat, B. M., Wani, G., Zhao, Q., El-Mahdy, M. A., et al. (2009). Tangeretin sensitizes cisplatin-resistant human ovarian cancer cells through downregulation of phosphoinositide 3-kinase/Akt signaling pathway. Cancer Research, 69, 8910–8917.

    Article  Google Scholar 

  11. Morley, K. L., Ferguson, P. J., & Koropatnick, J. (2007). Tangeretin and nobiletin induce G1 cell cycle arrest but not apoptosis in human breast and colon cancer cells. Cancer Letters, 251, 168–178.

    Article  PubMed  CAS  Google Scholar 

  12. Nakamura, S., Fujimoto, K., Matsumoto, T., Ohta, T., Ogawa, K., Tamura, H., et al. (2013). Structures of acylated sucroses and an acylated flavonol glycoside and inhibitory effects of constituents on aldose reductase from the flower buds of Prunus mume. Journal of Natural Medicines, 67, 799–806.

    Article  PubMed  CAS  Google Scholar 

  13. Rubio, S., Quintana, J., Eiroa, J. L., Triana, J., & Estevez, F. (2007). Acetyl derivative of quercetin 3-methyl ether-induced cell death in human leukemia cells is amplified by the inhibition of ERK. Carcinogenesis, 28, 2105–2113.

    Article  PubMed  CAS  Google Scholar 

  14. Li, S., Lo, C. Y., & Ho, C. T. (2006). Hydroxylated polymethoxyflavones and methylated flavonoids in sweet orange (Citrus sinensis) peel. Journal of Agricultural and Food Chemistry, 54, 4176–4185.

    Article  PubMed  CAS  Google Scholar 

  15. Li, S., Pan, M. H., Lai, C. S., Lo, C. Y., Dushenkov, S., & Ho, C. T. (2007). Isolation and syntheses of polymethoxyflavones and hydroxylated polymethoxyflavones as inhibitors of HL-60 cell lines. Bioorganic & Medicinal Chemistry, 15, 3381–3389.

    Article  CAS  Google Scholar 

  16. Charoensinphon, N., Qiu, P., Dong, P., Zheng, J., Ngauv, P., Cao, Y., et al. (2013). 5-Demethyltangeretin inhibits human nonsmall cell lung cancer cell growth by inducing G2/M cell cycle arrest and apoptosis. Molecular Nutrition & Food Research, 57(12), 2103–2111.

    Article  CAS  Google Scholar 

  17. Han, Z. B., Ren, H., Zhao, H., Chi, Y., Chen, K., Zhou, B., et al. (2008). Hypoxia-inducible factor (HIF)-1 alpha directly enhances the transcriptional activity of stem cell factor (SCF) in response to hypoxia and epidermal growth factor (EGF). Carcinogenesis, 29, 1853–1861.

    Article  PubMed  CAS  Google Scholar 

  18. Banath, J. P., Fushiki, M., & Olive, P. L. (1998). Rejoining of DNA single- and double-strand breaks in human white blood cells exposed to ionizing radiation. International Journal of Radiation Biology, 73, 649–660.

    Article  PubMed  CAS  Google Scholar 

  19. Liu, Q., Cao, J., Li, K. Q., Miao, X. H., Li, G., Fan, F. Y., et al. (2009). Chromosomal aberrations and DNA damage in human populations exposed to the processing of electronics waste. Environmental Science and Pollution Research International, 16, 329–338.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang, Z., Teruya, K., Eto, H., & Shirahata, S. (2011). Fucoidan extract induces apoptosis in MCF-7 cells via a mechanism involving the ROS-dependent JNK activation and mitochondria-mediated pathways. PLoS One, 6, e27441.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Lu, Z., Zhang, C., & Zhai, Z. (2005). Nucleoplasmin regulates chromatin condensation during apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 102, 2778–2783.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Chopin, V., Toillon, R. A., Jouy, N., & Le Bourhis, X. (2004). P21(WAF1/CIP1) is dispensable for G1 arrest, but indispensable for apoptosis induced by sodium butyrate in MCF-7 breast cancer cells. Oncogene, 23, 21–29.

    Article  PubMed  CAS  Google Scholar 

  23. Lakhani, S. A., Masud, A., Kuida, K., Porter, G. A, Jr, Booth, C. J., Mehal, W. Z., et al. (2006). Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science, 311, 847–851.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Tewari, M., Quan, L. T., O’Rourke, K., Desnoyers, S., Zeng, Z., Beidler, D. R., et al. (1995). Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell, 81, 801–809.

    Article  PubMed  CAS  Google Scholar 

  25. Cande, C., Vahsen, N., Garrido, C., & Kroemer, G. (2004). Apoptosis-inducing factor (AIF): caspase-independent after all. Cell Death and Differentiation, 11, 591–595.

    PubMed  CAS  Google Scholar 

  26. Lu, C., Zhu, F., Cho, Y. Y., Tang, F., Zykova, T., Ma, W. Y., et al. (2006). Cell apoptosis: requirement of H2AX in DNA ladder formation, but not for the activation of caspase-3. Molecular Cell, 23, 121–132.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Cregan, S. P., Dawson, V. L., & Slack, R. S. (2004). Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene, 23, 2785–2796.

    Article  PubMed  CAS  Google Scholar 

  28. Galluzzi, L., Vitale, I., Abrams, J. M., Alnemri, E. S., Baehrecke, E. H., Blagosklonny, M. V., et al. (2012). Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death and Differentiation, 19, 107–120.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Schug, Z. T., Gonzalvez, F., Houtkooper, R. H., Vaz, F. M., & Gottlieb, E. (2011). BID is cleaved by caspase-8 within a native complex on the mitochondrial membrane. Cell Death and Differentiation, 18, 538–548.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Tourneur, L., & Chiocchia, G. (2010). FADD: a regulator of life and death. Trends in Immunology, 31, 260–269.

    Article  PubMed  CAS  Google Scholar 

  31. Elumalai, P., Gunadharini, D. N., Senthilkumar, K., Banudevi, S., Arunkumar, R., Benson, C. S., et al. (2012). Induction of apoptosis in human breast cancer cells by nimbolide through extrinsic and intrinsic pathway. Toxicology Letters, 215, 131–142.

    Article  PubMed  CAS  Google Scholar 

  32. Li, S. (2013). Color version of compendium of materia medica. Tianjin: Tianjin Science and Technology Press.

    Google Scholar 

  33. Ravishankar, D., Rajora, A. K., Greco, F., & Osborn, H. M. (2013). Flavonoids as prospective compounds for anti-cancer therapy. The International Journal of Biochemistry & Cell Biology, 45, 2821–2831.

    Article  CAS  Google Scholar 

  34. Arango, D., Parihar, A., Villamena, F. A., Wang, L., Freitas, M. A., Grotewold, E., et al. (2012). Apigenin induces DNA damage through the PKCdelta-dependent activation of ATM and H2AX causing down-regulation of genes involved in cell cycle control and DNA repair. Biochemical Pharmacology, 84, 1571–1580.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Kook, S. H., Son, Y. O., Chung, S. W., Lee, S. A., Kim, J. G., Jeon, Y. M., et al. (2007). Caspase-independent death of human osteosarcoma cells by flavonoids is driven by p53-mediated mitochondrial stress and nuclear translocation of AIF and endonuclease G. Apoptosis: An International Journal on Programmed Cell Death, 12, 1289–1298.

    Article  CAS  Google Scholar 

  36. Igney, F. H., & Krammer, P. H. (2002). Death and anti-death: tumour resistance to apoptosis. Nature Reviews Cancer, 2, 277–288.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant Nos. 81172837, 81101220), the Tianjin Research Program of Application Foundation and Advanced Technology (Grant Nos. 12JCQNJC08100, 13JCQNJC12200) and Innovative Research Team Grant for Agriculture Product Storage and procession (TD12-5049). We thank Mr. Xiaomeng Xing and Ms. Kaili Lin (Center for SCGE assay). We thank Dr. Chang Xu for providing PARP antibody. We thank Dr. Edward Li (Cell Signaling Technology, Technical Support Specialist) for providing partial element of Supplementary Fig. 2).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiming Li or Hui Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12013_2014_49_MOESM1_ESM.jpg

Supplementary Fig. 1a Cells treated with 5-ATAN (5, 10 and 20 μM) for 12/24 h and observed under microscope (4×). b DAPI staining of MCF-7 cells treated with different time 5 μM 5-ATAN (20×). c MCF-7 cells were incubated for 6 h in the presence 5 μM 5-ATAN or TAN (5, 20 μM). d MCF-7 cells were incubated for the indicated times in the presence or absence of 5 μM 5-ATAN. The protein levels of Bax and Bcl-2 were analyzed by western blotting. e Effects of caspase inhibitors on cell viability induced by MCF-7 cells were pretreated with various caspase inhibitors at 10 μM for 2 h followed by incubation with 5-ATAN (5 μM) for 24 h. (JPEG 433 kb)

Supplementary Fig. 2a Working model summarizing the mechanism of 5-ATAN induced apoptosis in MCF-7 cells (JPEG 505 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Duan, Y., Zhi, D. et al. Pro-Apoptotic Effects of the Novel Tangeretin Derivate 5-Acetyl-6,7,8,4′-Tetramethylnortangeretin on MCF-7 Breast Cancer Cells. Cell Biochem Biophys 70, 1255–1263 (2014). https://doi.org/10.1007/s12013-014-0049-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0049-7

Keywords

Navigation