Skip to main content
Log in

Knockdown of Akt2 Expression by ShRNA Inhibits Proliferation, Enhances Apoptosis, and Increases Chemosensitivity to Paclitaxel in Human Colorectal Cancer Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Akt2 overexpression correlates with chemoresistance of colorectal cancer (CRC). However, the cellular functions and precise signals elicited by Akt2 in LSCC have not been elucidated. Here, we transfected a CRC cell line HCT116 with Akt-2 targeted shRNA in order to establish a cell line with Akt2 knockdown. In vitro experiments showed that knockdown Akt2 in HCT116 cells was associated with decrease in cell proliferation as well as enhanced cell apoptosis. Furthermore, our results demonstrated that Akt2 knockdown correlated with elevated chemosensitivity of HCT116 cells to paclitaxel. Importantly, we found that knockdown of AKt2 resulted in downregulation of MDR-1 and MRP-1. Our findings may lead to a better understanding of the biological effect of Akt2 and may provide mechanistic insights for developing potential therapeutic strategies targeting AKt2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Glimelius, B., et al. (2003). A systematic overview of radiation therapy effects in rectal cancer. Acta Oncologica, 42(5–6), 476–492.

    Article  PubMed  Google Scholar 

  2. Li, J., et al. (2011). miR-203 reverses chemoresistance in p53-mutated colon cancer cells through downregulation of Akt2 expression. Cancer Letters, 304(1), 52–59.

    Article  CAS  PubMed  Google Scholar 

  3. Ades, S. (2009). Adjuvant chemotherapy for colon cancer in the elderly: moving from evidence to practice. Oncology (Williston Park), 23(2), 162–167.

    Google Scholar 

  4. Hanada, M., Feng, J., & Hemmings, B. A. (2004). Structure, regulation and function of PKB/AKT–a major therapeutic target. Biochimica et Biophysica Acta, 1697(1–2), 3–16.

    Article  CAS  PubMed  Google Scholar 

  5. Cui, Y., et al. (2012). Knockdown of AKT2 expression by RNA interference inhibits proliferation, enhances apoptosis, and increases chemosensitivity to the anticancer drug VM-26 in U87 glioma cells. Brain Research, 1469, 1–9.

    Article  CAS  PubMed  Google Scholar 

  6. Ericson, K., et al. (2010). Genetic inactivation of AKT1, AKT2, and PDPK1 in human colorectal cancer cells clarifies their roles in tumor growth regulation. Proceedings of the Nationail Academy of Science U S A, 107(6), 2598–2603.

    Article  CAS  Google Scholar 

  7. Wang, J., et al. (2012). Knockdown of cyclin D1 inhibits proliferation, induces apoptosis, and attenuates the invasive capacity of human glioblastoma cells. Journal of Neuro-oncology, 106(3), 473–484.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, G., et al. (2011). Knockdown of Akt sensitizes osteosarcoma cells to apoptosis induced by cisplatin treatment. International Journal of Molecular Sciences, 12(5), 2994–3005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Cantley, L. C. (2002). The phosphoinositide 3-kinase pathway. Science, 296(5573), 1655–1657.

    Article  CAS  PubMed  Google Scholar 

  10. Chin, Y. R., & Toker, A. (2009). Function of Akt/PKB signaling to cell motility, invasion and the tumor stroma in cancer. Cellular Signalling, 21(4), 470–476.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Andjelkovic, M., et al. (1997). Role of translocation in the activation and function of protein kinase B. Journal of Biological Chemistry, 272(50), 31515–31524.

    Article  CAS  PubMed  Google Scholar 

  12. Borgatti, P., et al. (2003). Threonine 308 phosphorylated form of Akt translocates to the nucleus of PC12 cells under nerve growth factor stimulation and associates with the nuclear matrix protein nucleolin. Journal of Cellular Physiology, 196(1), 79–88.

    Article  CAS  PubMed  Google Scholar 

  13. Calera, M. R., et al. (1998). Insulin increases the association of Akt-2 with Glut4-containing vesicles. Journal of Biological Chemistry, 273(13), 7201–7204.

    Article  CAS  PubMed  Google Scholar 

  14. Kupriyanova, T. A., & Kandror, K. V. (1999). Akt-2 binds to Glut4-containing vesicles and phosphorylates their component proteins in response to insulin. Journal of Biological Chemistry, 274(3), 1458–1464.

    Article  CAS  PubMed  Google Scholar 

  15. Roy, H. K., et al. (2002). AKT proto-oncogene overexpression is an early event during sporadic colon carcinogenesis. Carcinogenesis, 23(1), 201–205.

    Article  CAS  PubMed  Google Scholar 

  16. Coffer, P. J., & Woodgett, J. R. (1992). Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. European Journal of Biochemistry, 205(3), 1217.

    CAS  PubMed  Google Scholar 

  17. Morini, M., et al. (2000). The alpha 3 beta 1 integrin is associated with mammary carcinoma cell metastasis, invasion, and gelatinase B (MMP-9) activity. International Journal of Cancer, 87(3), 336–342.

    Article  CAS  Google Scholar 

  18. Yuan, Z. Q., et al. (2003). AKT2 inhibition of cisplatin-induced JNK/p38 and Bax activation by phosphorylation of ASK1: implication of AKT2 in chemoresistance. Journal of Biological Chemistry, 278(26), 23432–23440.

    Article  CAS  PubMed  Google Scholar 

  19. Bellacosa, A., et al. (1995). Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. International Journal of Cancer, 64(4), 280–285.

    Article  CAS  Google Scholar 

  20. Liao, Y., et al. (2003). Increase of AKT/PKB expression correlates with gleason pattern in human prostate cancer. International Journal of Cancer, 107(4), 676–680.

    Article  CAS  Google Scholar 

  21. Djeu, J. Y., & Wei, S. (2009). Clusterin and chemoresistance. Advances in Cancer Research, 105, 77–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Argov, M., et al. (2010). Novel steroid carbamates reverse multidrug-resistance in cancer therapy and show linkage among efficacy, loci of drug action and P-glycoprotein’s cellular localization. European Journal of Pharmaceutical Sciences, 41(1), 53–59.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Z., Xu, F., Li, G. et al. Knockdown of Akt2 Expression by ShRNA Inhibits Proliferation, Enhances Apoptosis, and Increases Chemosensitivity to Paclitaxel in Human Colorectal Cancer Cells. Cell Biochem Biophys 71, 383–388 (2015). https://doi.org/10.1007/s12013-014-0209-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0209-9

Keywords

Navigation