Skip to main content

Advertisement

Log in

Apoptotic Effect of Koumine on Human Breast Cancer Cells and the Mechanism Involved

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Koumine is an alkaloid separated from traditional Chinese herb Gelsemium elegans. In this study, anticancer activity and underlying mechanisms were investigated with an extract using human breast cancer cells. The survival rate was reduced in a concentration- and time-dependent manner as assessed by MTT assay. After incubation for 48 h, typical apoptotic morphological changes were observed by Hoechst 33258 dye assay. Flow cytometry result revealed that the treatment obviously induced G2/M arrest and apoptosis in MCF-7 cells. Furthermore, Western blotting demonstrated the down-regulation of protein expression of Bcl-2, whereas Bax and caspase-3 expressions were up-regulated. Therefore, we propose that koumine has the potential to be a future breast cancer chemotherapeutic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Meng, L. Y., Liu, H. R., Shen, Y., et al. (2011). Cochinchina momordica seed extract induces G2/M arrest and apoptosis in human breast cancer MDA-MB-231 cells by modulating the PI3K/Akt pathway. Asian Pacific Journal of Cancer Prevention, 12, 3483–3488.

    PubMed  Google Scholar 

  2. Vaira, S., Friday, E., Scott, K., et al. (2012). Wnt/beta-catenin signaling pathway and thioredoxin-interacting protein (TXNIP) mediate the “glucose sensor” mechanism in metastatic breast cancer-derived cells MDA-MB-231. Journal of Cellular Physiology, 227, 578–586.

    Article  CAS  PubMed  Google Scholar 

  3. Eastman, B. M., Jo, M., Webb, D. L., et al. (2012). A transformation in the mechanism by which the urokinase receptor signals provides a selection advantage for estrogen receptor-expressing breast cancer cells in the absence of estrogen. Cellular Signalling, 24, 1847–1855.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Han, J., Kim, S., Yang, J. H., et al. (2012). TPA-induced p21 expression augments G2/M arrest through a p53-independent mechanism in human breast cancer cells. Oncology Reports, 27, 517–522.

    CAS  PubMed  Google Scholar 

  5. Ibrahim, S. A., Yip, G. W., Stock, C., et al. (2012). Targeting of syndecan-1 by microRNA miR-10b promotes breast cancer cell motility and invasiveness via a Rho-GTPase- and E-cadherin-dependent mechanism. International Journal of Cancer, 131, E884–E896.

    Article  CAS  Google Scholar 

  6. Allensworth, J. L., Sauer, S. J., Lyerly, H. K., et al. (2013). Smac mimetic Birinapant induces apoptosis and enhances TRAIL potency in inflammatory breast cancer cells in an IAP-dependent and TNF-alpha-independent mechanism. Breast Cancer Research and Treatment, 137, 359–371.

    Article  CAS  PubMed  Google Scholar 

  7. Kong, H. K., Yoon, S., & Park, J. H. (2012). The regulatory mechanism of the LY6K gene expression in human breast cancer cells. Journal of Biological Chemistry, 287, 38889–38900.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Chen, H., Zhang, Z. W., Guo, Y., et al. (2012). The proliferative role of insulin and the mechanism underlying this action in human breast cancer cell line MCF-7. Journal of BUON, 17, 658–662.

    PubMed  Google Scholar 

  9. Mohamed, M. M. (2012). Monocytes conditioned media stimulate fibronectin expression and spreading of inflammatory breast cancer cells in three-dimensional culture: A mechanism mediated by IL-8 signaling pathway. Cell Communication and Signaling, 10, 3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Lee, Y. J., Won, A. J., Lee, J., et al. (2012). Molecular mechanism of SAHA on regulation of autophagic cell death in tamoxifen-resistant MCF-7 breast cancer cells. International Journal of Medical Sciences, 9, 881–893.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Zhang, Y., Zhang, B., Feng, W. H., et al. (2012). Molecular mechanism of Aurora kinase inhibitor PHA739358 in inhibited proliferation and induced apoptosis of breast cancer cells. Zhonghua Yi Xue Za Zhi, 92, 45–49.

    CAS  PubMed  Google Scholar 

  12. Saito, H., & Miki, Y. (2012). Mechanisms of human breast cancer tumorigenesis: Outline (including the molecular mechanism and multi-step of breast carcinogenesis). Nihon Rinsho, 70(Suppl 7), 92–96.

    PubMed  Google Scholar 

  13. Zhang, H., Zhou, L., Shi, W., et al. (2012). A mechanism underlying the effects of polyunsaturated fatty acids on breast cancer. International Journal of Molecular Medicine, 30, 487–494.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Liu, J. L., Wei, W., Tang, W., et al. (2012). Mechanism of lysyl oxidase (LOX) in breast cancer invasion and metastasis. Zhonghua Yi Xue Za Zhi, 92, 1379–1383.

    CAS  PubMed  Google Scholar 

  15. Sen, S., Kawahara, B., & Chaudhuri, G. (2012). Maintenance of higher H(2)O(2) levels, and its mechanism of action to induce growth in breast cancer cells: Important roles of bioactive catalase and PP2A. Free Radical Biology and Medicine, 53, 1541–1551.

    Article  CAS  PubMed  Google Scholar 

  16. Sandhu, R., Rivenbark, A. G., & Coleman, W. B. (2012). Loss of post-transcriptional regulation of DNMT3b by microRNAs: A possible molecular mechanism for the hypermethylation defect observed in a subset of breast cancer cell lines. International Journal of Oncology, 41, 721–732.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Jan, R., Huang, M., & Lewis-Wambi, J. (2012). Loss of pigment epithelium-derived factor: A novel mechanism for the development of endocrine resistance in breast cancer. Breast Cancer Research, 14, R146.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Gupta, A., Mehta, R., Alimirah, F., et al. (2013). Efficacy and mechanism of action of Proellex, an antiprogestin in aromatase overexpressing and Letrozole resistant T47D breast cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 133, 30–42.

    Article  CAS  PubMed  Google Scholar 

  19. Ma, J., Li, J., Li, H., et al. (2012). Downregulation of pancreatic-duodenal homeobox 1 expression in breast cancer patients: A mechanism of proliferation and apoptosis in cancer. Molecular Medicine Reports, 6, 983–988.

    CAS  PubMed  Google Scholar 

  20. Cole, L. K., Vance, J. E., & Vance, D. E. (2012). Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochimica et Biophysica Acta, 1821, 754–761.

    Article  CAS  PubMed  Google Scholar 

  21. Pieper, G. M., Jordan, M., Dondlinger, L. A., et al. (1995). Peroxidative stress in diabetic blood vessels. Reversal by pancreatic islet transplantation. Diabetes, 44, 884–889.

    Article  CAS  PubMed  Google Scholar 

  22. Bullon, P., Newman, H. N., & Battino, M. (2014). Obesity, diabetes mellitus, atherosclerosis and chronic periodontitis: A shared pathology via oxidative stress and mitochondrial dysfunction? Periodontology, 2000(64), 139–153.

    Article  Google Scholar 

  23. Hortelano, S., Dewez, B., Genaro, A. M., et al. (1995). Nitric oxide is released in regenerating liver after partial hepatectomy. Hepatology, 21, 776–786.

    CAS  PubMed  Google Scholar 

  24. Liu, M., Shen, J., Liu, H., et al. (2011). Gelsenicine from Gelsemium elegans attenuates neuropathic and inflammatory pain in mice. Biological and Pharmaceutical Bulletin, 34, 1877–1880.

    Article  CAS  PubMed  Google Scholar 

  25. Liu, M., Huang, H. H., Yang, J., et al. (2013). The active alkaloids of Gelsemium elegans Benth. are potent anxiolytics. Psychopharmacology (Berlin), 225, 839–851.

    Article  CAS  Google Scholar 

  26. Hwang, K. T., Woo, J. W., Shin, H. C., et al. (2012). Prognostic influence of BCL2 expression in breast cancer. International Journal of Cancer, 131, E1109–E1119.

    Article  CAS  Google Scholar 

  27. Searle, C. J., Brock, I. W., Cross, S. S., et al. (2012). A BCL2 promoter polymorphism rs2279115 is not associated with BCL2 protein expression or patient survival in breast cancer patients. Springerplus, 1, 38.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Ali, H. R., Dawson, S. J., Blows, F. M., et al. (2012). A Ki67/BCL2 index based on immunohistochemistry is highly prognostic in ER-positive breast cancer. Journal of Pathology, 226, 97–107.

    Article  CAS  PubMed  Google Scholar 

  29. Hashemi, M., Eskandari-Nasab, E., Fazaeli, A., et al. (2012). Bi-directional PCR allele-specific amplification (bi-PASA) for detection of caspase-8—652 6N ins/del promoter polymorphism (rs3834129) in breast cancer. Gene, 505, 176–179.

    Article  CAS  PubMed  Google Scholar 

  30. Yan, M. Y., Chien, S. Y., Kuo, S. J., et al. (2012). Tanshinone IIA inhibits BT-20 human breast cancer cell proliferation through increasing caspase 12, GADD153 and phospho-p38 protein expression. International Journal of Molecular Medicine, 29, 855–863.

    CAS  PubMed  Google Scholar 

  31. Sabine, V. S., Faratian, D., Kirkegaard-Clausen, T., et al. (2012). Validation of activated caspase-3 antibody staining as a marker of apoptosis in breast cancer. Histopathology, 60, 369–371.

    Article  PubMed  Google Scholar 

  32. Fang, E. F., Zhang, C. Z., Fong, W. P., et al. (2012). RNase MC2: A new Momordica charantia ribonuclease that induces apoptosis in breast cancer cells associated with activation of MAPKs and induction of caspase pathways. Apoptosis, 17, 377–387.

    Article  CAS  PubMed  Google Scholar 

  33. Yang, P. M., Tseng, H. H., Peng, C. W., et al. (2012). Dietary flavonoid fisetin targets caspase-3-deficient human breast cancer MCF-7 cells by induction of caspase-7-associated apoptosis and inhibition of autophagy. International Journal of Oncology, 40, 469–478.

    PubMed  Google Scholar 

  34. Morimoto-Kamata, R., Mizoguchi, S., Ichisugi, T., et al. (2012). Cathepsin G induces cell aggregation of human breast cancer MCF-7 cells via a 2-step mechanism: Catalytic site-independent binding to the cell surface and enzymatic activity-dependent induction of the cell aggregation. Mediators of Inflammation, 2012, 456462.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Korashy, H. M., Maayah, Z. H., Abd-Allah, A. R., et al. (2012). Camel milk triggers apoptotic signaling pathways in human hepatoma HepG2 and breast cancer MCF7 cell lines through transcriptional mechanism. Journal of Biomedicine and Biotechnology, 2012, 593195.

    PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have not declared any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, Y., Gao, B. et al. Apoptotic Effect of Koumine on Human Breast Cancer Cells and the Mechanism Involved. Cell Biochem Biophys 72, 411–416 (2015). https://doi.org/10.1007/s12013-014-0479-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0479-2

Keywords

Navigation