Skip to main content

Advertisement

Log in

Ethyl 4-(4-methylphenyl)-4-pentenoate from Vetiveria zizanioides Inhibits Dengue NS2B–NS3 Protease and Prevents Viral Assembly: A Computational Molecular Dynamics and Docking Study

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Around 50 % of the world’s population is at the risk of dengue, a viral infection. Presently, there are not many drugs and prophylactic measures available to control dengue viral infection, and hence, there is an urgent need to develop effective antidengue compound from natural sources. In the current study, we explored the antiviral properties of the medicinal plant Vetiveria zizanioides against dengue virus. Initially, the antiviral properties of active compounds were examined using docking analysis along with reference ligand. The enzyme–ligand complex which showed higher binding affinity than the reference ligand was employed for subsequent analysis. The stability of the top scoring enzyme–ligand complex was further validated using molecular simulation studies. On the whole, the study reveals that the compound Ethyl 4-(4-methylphenyl)-4-pentenoate has an effective antiviral property, which can serve as a potential lead molecule in drug discovery process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ADMET:

Absorption, distribution, metabolism, excretion, and toxicity

CDC:

Centre for Disease Control and Prevention

DENV:

Dengue virus

LINCS:

Linear constraint solver

MOLCAD:

Molecular computer-aided design

NS:

Nonstructural

NVT:

Constant number of particles, volume, and temperature

NPT:

Constant number of particles, pressure, and temperature

PDB:

Protein data bank

PME:

Particle mesh Ewald

RMSD:

Root mean square deviation

RMSF:

Rood mean square fluctuation

Vetiveria zizanioides :

V. zizanioides

References

  1. Hynes, N. A. (2012). Dengue: A reemerging concern for travelers. Cleveland Clinic Journal of Medicine, 9, 7474–7482.

    Google Scholar 

  2. Tomlinson, S. M., & Watowich, S. J. (2011). Anthracene-based inhibitors of dengue virus NS2B–NS3 protease. Antiviral Research, 89, 127–135.

    Article  CAS  PubMed  Google Scholar 

  3. Wang, Q. Y., Patel, S. J., Vangrevelinghe, E., Xu, H. Y., Rao, R., Jaber, D., et al. (2009). A small-molecule Dengue virus entry inhibitor. Antimicrobial Agents and Chemotherapy, 53, 51823–51831.

    Google Scholar 

  4. Qing, M., Zou, G., Wang, Q. Y., Xu, H. Y., Dong, H., Yuan, Z., & Shi, P. Y. (2010). Characterization of Dengue virus resistance to Brequinar in cell culture. Antimicrobial Agents and Chemotherapy, 54, 3686–3695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gromowski, G. D., Barrett, N. D., & Barrett, A. D. T. (2008). Characterization of Dengue virus complex-specific neutralizing epitopes on envelope protein domain III of Dengue 2 virus. Journal of Virology, 82, 8828–8837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Luo, D., Xu, T., Hunke, C., Gruber, G., Vasudevan, S. G., & Lescar, J. (2008). Crystal structure of N3 protease—helicase from dengue virus. Journal of Virology, 82, 173–183.

    Article  CAS  PubMed  Google Scholar 

  7. Wang, Q. Y., Kondreddi, R. R., Xie, X., Rao, R., Nilar, S., Xu, H. Y., et al. (2011). A translation inhibitor that suppresses Dengue virus in vitro and in vivo. Antimicrobial Agents and Chemotherapy, 55, 4072–4080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Falgout, B., Pethel, M., Zhang, Y. M., & Lai, C. J. (1991). Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of Dengue virus nonstructural proteins. Journal of Virology, 65, 2467–2475.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chambers, T. J., Nestorowicz, A., Amberg, S. M., & Rice, C. M. (1993). Mutagenesis of the yellow fever virus NS2B protein: effects on proteolytic processing, NS2B–NS3 complex formation, and viral replication. Journal of Virology, 67, 6797–6807.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu, C. F., Wang, S. H., Sun, C. M., Hu, S. T., & Syu, W. J. (2003). Activation of dengue protease autocleavage at the NS2B–NS3 junction by recombinant NS3 and GST-NS2B fusion proteins. Journal of Virological Methods, 114, 45–54.

    Article  CAS  PubMed  Google Scholar 

  11. Tomlinson, S. M., Malmstrom, R. D., Russo, A., Mueller, N., Pang, Y. P., & Watowich, S. J. (2009). Structure-based discovery of dengue virus protease inhibitors. Antiviral Research, 82, 110–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rates, S. M. K. (2001). Plants as source of drugs. Toxicon, 39, 603–613.

    Article  CAS  PubMed  Google Scholar 

  13. Lanini, J., Almeida, J. M. D., Nappo, S. A., & Carlini, E. A. (2012). Are medicinal herbs safe? The opinion of plant vendors from Diadema (Sao Paulo, southeastern Brazil). Revista Brasileira de Farmacognosia, 22, 21–28.

    Article  Google Scholar 

  14. Kim, H., Chen, F., Wang, X., Chung, H. Y., & Jin, Z. (2005). Evaluation of antioxidant activity of vetiver (Vetiveria zizanioides L) oil and identification of its antioxidant activity constituents. Journal of Agriculture and Food Chemistry, 53, 7691–7695.

    Article  CAS  Google Scholar 

  15. Singh, S. P., Sharma, S. K., Singh, T., & Singh, L. (2013). Review on Vetiveria zizanioides: A medicinal herb. JDDT, 1, 80–83.

    Google Scholar 

  16. Peng, H. Y., Lai, C. C., Lin, C. C., & Chou, S. T. (2014). Effect of Vetiveria zizanioides essential oil on melanogenesis in melanoma cells: Downregulation of tyrosinase expression and suppression of oxidative stress. The Scientific World Journal. doi:10.1155/2014/213013.

    Google Scholar 

  17. Maffei, M. (2002). Vetiveria: The genus vetiveria (p. 73). Boca Raton: CRC Press.

    Book  Google Scholar 

  18. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000). The protein data bank. Nucleic Acid Research, 28, 235–242.

    Article  CAS  Google Scholar 

  19. Chandramouli, S., Joseph, J. S., Daudenarde, S., Gatchalian, J., Ty, C. C., & Kuhn, P. (2010). Serotype-Specific structural differences in the protease-cofactor complexes of the dengue virus family. Journal of Virology, 84, 3059–3067.

    Article  CAS  PubMed  Google Scholar 

  20. Erbel, P., Schiering, N., D’Arch, A., Renatus, M., Kroemer, M., Lim, S. P., et al. (2006). Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nature Structural & Molecular Biology, 13, 372–373.

    Article  CAS  Google Scholar 

  21. Noble, C. G., She, C. C., Chao, A. T., & Shi, P. Y. (2012). Ligand-bound structures of the dengue virus protease reveal the active conformation. Journal of Virology, 86, 438–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luo, D., Wei, N., Daon, D. N., Paradkar, P. N., Chong, Y., Davidson, A. D., et al. (2010). Flexibility between the protease and helicase domains of the dengue virus NS3 protein conferred by the linker region and its functional implications. Journal of Biological Chemistry, 285, 18817–18827.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chou, S. T., Lai, C. P., Lin, C. C., & Shih, Y. (2012). Study of the chemical composition, antioxidant activity and anti-inflammatory activity of essential oil from Vetiveria zizanioides. Food Chemistry, 134, 262–268.

    Article  CAS  Google Scholar 

  24. Frimayanthi, N., Chee, C. F., Zain, S. M., & Rahman, N. A. (2011). Design of new competitive Dengue Ns2b/Ns3 protease inhibitors—a computational approach. International Journal of Molecular Sciences, 12, 1089–1100.

    Article  Google Scholar 

  25. Jain, A. N. (2003). Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. Journal of Medicinal Chemistry, 46, 499–511.

    Article  CAS  PubMed  Google Scholar 

  26. Jones, G., Willett, P., & Glen, R. C. (1995). Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. Journal of Molecular Biology, 245, 43–53.

    Article  CAS  PubMed  Google Scholar 

  27. Meng, E. C., Shoichet, B. K., & Kuntz, I. D. (1992). Automated docking with grid-based energy evaluation. Journal of Computational Chemistry, 13, 505–524.

    Article  CAS  Google Scholar 

  28. Eldridge, M. D., Murray, C. W., Auton, T. R., Paolini, G. V., & Mee, R. P. (1997). Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design, 11, 425–445.

    Article  CAS  PubMed  Google Scholar 

  29. Ling, B., Bi, S., Sun, M., Jing, Z., Li, X., & Zhang, R. (2014). Molecular dynamics simulations of mutated Mycobacterium tuberculosis l-alanine dehydrogenase to illuminate the role of key residues. Journal of Molecular Graphics and Modelling, 50, 61–70.

    Article  CAS  PubMed  Google Scholar 

  30. Hess, B., Kutzner, C., Spoel, D. V. D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and Scalable molecular simulation. Journal of Chemical Theory and Computation, 4, 435–447.

    Article  CAS  PubMed  Google Scholar 

  31. Lee, H. C., Hsu, W. C., Liu, A. L., Hsu, C. J., & Sun, Y. C. (2014). Using thermodynamic integration MD simulation to compute relative protein-ligand binding free energy of a GSK3β kinase inhibitor and its analogs. Journal of Molecular Graphics and Modelling, 51, 37–49.

    Article  PubMed  Google Scholar 

  32. Suhre, K., & Sanejouand, Y. H. (2015). ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. The Journal of Physical Chemistry B, 119, 15395–15406.

    Article  Google Scholar 

  33. Spoel, D. V. D., Lindahl, E., Hess, B., & Groenhof, G. (2005). GROMACS: Fast, flexible and free. Journal of Computational Chemistry, 26, 1707–1718.

    Google Scholar 

  34. Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., et al. (2012). admetSAR: A comprehensive source and free tool for evaluating chemical ADMET properties. Journal of Chemical Information and Modeling, 52, 3099–3105.

    Article  CAS  PubMed  Google Scholar 

  35. Lavanya, P., Ramaiah, S., & Anbarasu, A. (2015). Computational analysis reveal inhibitory action of nimbin against dengue viral envelope protein. Virus Disease, 26, 243–254.

    Article  CAS  PubMed  Google Scholar 

  36. Hao, G. F., Yang, G. F., & Zhan, C. G. (2012). Structure-based methods for predicting target mutation-induced drug resistance and rational drug design to overcome the problem. Drug Discovery Today, 17, 1121–1126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Badia, E., Oliva, J., Balaguer, P., & Cavailles, V. (2007). Tamoxifen resistance and epigenetic modifications in breast cancer cell lines. Current Medicinal Chemistry, 14, 3035–3045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jenwitheesuk, E., & Samudrala, R. (2005). Prediction of HIV-1 protease inhibitor resistance using a protein-inhibitor flexible docking approach. Antiviral Therapy, 10, 157–166.

    CAS  PubMed  Google Scholar 

  39. Layten, M., Hornak, V., & Simmerling, C. (2006). The open structure of a multi-drug-resistant HIV-1 protease is stabilized by crystal packing contacts. Journal of the American Chemical Society, 128, 13360–13361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moreira, I. S., Fernandes, P. A., & Ramos, M. J. (2007). Computational alanine scanning mutagenesis-an improved methodological approach. Journal of Computational Chemistry, 28, 644–654.

    Article  CAS  PubMed  Google Scholar 

  41. Senthilvel, P., Lavanya, P., Kumar, K. M., Swetha, R., Anitha, P., Bag, S., et al. (2013). Flavonoid from Carica papaya inhibits NS2B–NS3 protease and prevents Dengue 2 viral assembly. Bioinformation, 9, 18.

    Article  Google Scholar 

  42. Tomlinson, S. M., Malmstrom, R. D., & Watowich, S. J. (2011). New approaches to structure-based discovery of dengue protease inhibitors. Infectious Disorders-Drug Targets, 9, 327–343.

    Article  Google Scholar 

  43. Xie, X., Zou, J., Wang, Q. Y., Noble, C. G., Lescar, J., & Shi, P. Y. (2005). Generation and characterization of mouse monoclonal antibodies against NS4B protein of dengue virus. Virology, 450, 250–257.

    Google Scholar 

  44. Mishra, N. K., Deepak, R. N. V. K., Sankararamakrishnan, R., & Verma, S. (2015). Controlling in vitro insulin amyloidosis with stable peptide conjugates: A combined experimental and computational study. Journal of Physical Chemistry B, 119, 15395–15406.

    Article  CAS  Google Scholar 

  45. Zhang, L., & Demain, A. L. (2005). Natural products: Drug discovery and therapeutic medicine. New York: Humana Press.

    Book  Google Scholar 

  46. Lajiness, M. S., Vieth, M., & Erickson, J. (2004). Molecular properties that influence oral drug-like behavior. Current Opinion in Drug Discovery and Development, 7, 470–477.

    CAS  PubMed  Google Scholar 

  47. Geldenshuys, W. J., Allen, D. D., & Bloomquist, J. R. (2012). Novel models for assessing blood–brain barrier drug permeation. Expert Opinion on Drug Metabolism & Toxicology, 8, 647653.

    Google Scholar 

  48. Alavijeh, M. S., Chishty, M., Qaiser, Z. M., & Palmr, A. M. (2005). Drug metabolism and pharmacokinetics, the blood–brain barrier, and central nervous system drug discovery. NeuroRx, 2, 554–571.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Artal, C. F. J., Wichmann, O., Farrar, J., & Gascon, J. (2013). Neurological complications of dengue virus infection. The Lancet Neurology, 12, 906–919.

    Article  Google Scholar 

  50. Bohets, H., Annaert, P., Mannes, G., Beijsterveldt, L. V., Anciaux, K., Verboven, P., et al. (2001). Strategies for absorption screening in drug discovery and development. Current Topics in Medicinal Chemistry, 1, 367–383.

    Article  CAS  PubMed  Google Scholar 

  51. Bezirtzoglou, E. E. V. (2012). Intestinal chromosomes P450 regulating the intestinal microbiota and its probiotic profile. Microbial Ecology in Health and Disease. doi:10.3402/mehd.v23i0.18370.

    PubMed  PubMed Central  Google Scholar 

  52. Wessel, M. D., Jurs, P. C., Tolan, J. W., & Muskal, S. M. (1998). Prediction of human intestinal absorption of drug compounds from molecular structure. Journal of Chemical Information and Computer Sciences, 38, 726–735.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Anand Anbarasu and Dr. Sudha Ramaiah gratefully acknowledge the Indian Council of Medical Research (ICMR), Government of India Agency for the research grant [IRIS ID: 2014-0099]. P. Lavanya thanks ICMR for the Research fellowship. We would like to thank the management of VIT University for providing us the necessary facilities to carry out this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Anbarasu.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavanya, P., Ramaiah, S. & Anbarasu, A. Ethyl 4-(4-methylphenyl)-4-pentenoate from Vetiveria zizanioides Inhibits Dengue NS2B–NS3 Protease and Prevents Viral Assembly: A Computational Molecular Dynamics and Docking Study. Cell Biochem Biophys 74, 337–351 (2016). https://doi.org/10.1007/s12013-016-0741-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-016-0741-x

Keywords

Navigation