Skip to main content
Log in

Viable Fertile Mice Generated from Fully Pluripotent iPS Cells Derived from Adult Somatic Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Previous studies demonstrated that induced pluripotent stem (iPS) cells could produce viable mice through tetraploid complementation, which was thought to be the most stringent test for pluripotency. However, these highly pluripotent iPS cells were previously reported to be generated from fibroblasts of embryonic origin. Achieving fully pluripotent iPS cells from multiple cell types, especially easily accessible adult tissues, will lead to a much greater clinical impact. We successfully generated high-pluripotency iPS cells from adult tail tip fibroblasts (TTF) that resulted in viable, full-term, fertile TTF-iPS animals with no obvious teratoma formation or other developmental abnormalities. Comparison of iPS cells from embryonic origin (MEF), progenitor cells (neural stem cells) or differentiated somatic cells (TTF) reveals that fully pluripotent developmental potential can be reached by each cell type, although with different induction efficiencies. This work provides the means for studying the mechanisms and regulation of direct reprogramming, and has encouraging implications for future clinical applications and therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Hanna, J., Wernig, M., Markoulaki, S., Sun, C. W., Meissner, A., Cassady, J. P., et al. (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 318(5858), 1920–3.

    Article  CAS  PubMed  Google Scholar 

  2. Zhao, X. Y., Li, W., Lv, Z., Liu, L., Tong, M., Hai, T., et al. (2009). iPS cells produce viable mice through tetraploid complementation. Nature, 461(7260), 86–90.

    Article  CAS  PubMed  Google Scholar 

  3. Boland, M. J., Hazen, J. L., Nazor, K. L., Rodriguez, A. R., Gifford, W., Martin, G., et al. (2009). Adult mice generated from induced pluripotent stem cells. Nature, 461(7260), 91–94.

    Article  CAS  PubMed  Google Scholar 

  4. Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., et al. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26(1), 101–6.

    Article  CAS  PubMed  Google Scholar 

  5. Stadtfeld, M., Brennand, K., & Hochedlinger, K. (2008). Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Current Biology, 18(12), 890–4.

    Article  CAS  PubMed  Google Scholar 

  6. Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., et al. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448(7151), 318–24.

    Article  CAS  PubMed  Google Scholar 

  7. Conti, L., Pollard, S. M., Gorba, T., Reitano, E., Toselli, M., Biella, G., et al. (2005). Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biology, 3(9), e283. PMCID: 1184591.

    Article  PubMed  Google Scholar 

  8. Ying, Q. L., Stavridis, M., Griffiths, D., Li, M., & Smith, A. (2003). Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nature Biotechnology, 21(2), 183–6.

    Article  CAS  PubMed  Google Scholar 

  9. Zeng, F., & Schultz, R. M. (2005). RNA transcript profiling during zygotic gene activation in the preimplantation mouse embryo. Developmental Biology, 283(1), 40–57.

    Article  CAS  PubMed  Google Scholar 

  10. Brambrink, T., Foreman, R., Welstead, G. G., Lengner, C. J., Wernig, M., Suh, H., et al. (2008). Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell, 2(2), 151–9. PMCID: 2276627.

    Article  CAS  PubMed  Google Scholar 

  11. Wakayama, T., & Yanagimachi, R. (1999). Cloning of male mice from adult tail-tip cells. Nature Genetics, 22(2), 127–8.

    Article  CAS  PubMed  Google Scholar 

  12. Jaenisch, R., & Young, R. (2008). Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell, 132(4), 567–82.

    Article  CAS  PubMed  Google Scholar 

  13. Nagy, A., Gocza, E., Diaz, E. M., Prideaux, V. R., Ivanyi, E., Markkula, M., et al. (1990). Embryonic stem cells alone are able to support fetal development in the mouse. Development, 110(3), 815–21.

    CAS  PubMed  Google Scholar 

  14. Blelloch, R., Wang, Z., Meissner, A., Pollard, S., Smith, A., & Jaenisch, R. (2006). Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus. Stem Cells, 24(9), 2007–13.

    Article  CAS  PubMed  Google Scholar 

  15. Waddington, C. H. (1957). The strategy of the genes: a discussion of some aspects of theoretical biology. London: George Allen & Unwin.

    Google Scholar 

  16. Inoue, K., Ogonuki, N., Miki, H., Hirose, M., Noda, S., Kim, J. M., et al. (2006). Inefficient reprogramming of the hematopoietic stem cell genome following nuclear transfer. Journal of Cell Science, 119(Pt 10), 1985–91.

    Article  CAS  PubMed  Google Scholar 

  17. Wakayama, S., Kishigami, S., Van Thuan, N., Ohta, H., Hikichi, T., Mizutani, E., et al. (2005). Propagation of an infertile hermaphrodite mouse lacking germ cells by using nuclear transfer and embryonic stem cell technology. Proceedings of the National Academy of Sciences of the United States of America, 102(1), 29–33. PMCID: 544064.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by grants from China National Basic Research Program 2006CB701500 (to Q.Z.), 2007CB947800 (to F.Z.), 2007CB947700 (to L.W.) and the Shanghai Leading Academic Discipline Project S30201 STCSM Project 08dj1400502

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fanyi Zeng or Qi Zhou.

Additional information

Xiao-yang Zhao, Wei Li and Zhuo Lv have contributed equally to this work

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 6718 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Xy., Li, W., Lv, Z. et al. Viable Fertile Mice Generated from Fully Pluripotent iPS Cells Derived from Adult Somatic Cells. Stem Cell Rev and Rep 6, 390–397 (2010). https://doi.org/10.1007/s12015-010-9160-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9160-3

Keywords

Navigation