Skip to main content

Advertisement

Log in

Tissue-Regenerating, Vision-Restoring Corneal Epithelial Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The cornea, the most anterior segment of the eye, provides us with exquisite vision. Unlike other vital tissues, it is poorly protected from the environment and is thus reliant on a self-renewal program to preserve integrity. This function is reserved for corneal epithelial stem cells located in the basal layer of the limbus, a narrow transition zone that segregates the peripheral cornea from the adjacent conjunctiva. Under physiological conditions, these cells replenish the corneal epithelium when mature or traumatized cells are lost. However, when the limbus is extensively damaged, stem cell activity is compromised, resulting in a condition known as limbal stem cell deficiency (LSCD). This disease is characterized by corneal neovascularization and persistent epithelial defects which impair vision. Over the past 20 years a myriad of treatment options have been developed for LSCD, most of which incorporate stem cell transplantation. Due to the disadvantages associated with the use of allogeneic and xenogeneic material, researchers are currently focusing on refining techniques involving autologous limbal tissue transplantation and are delving into the possibility that stem cells found in other organs can provide an alternative source of corneal epithelium. Determining where donor stem cells reside on the recipient’s ocular surface and how long they remain viable will provide further insights into improving current therapeutic options for patients with LSCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Smith, T. W. (1977). Corneal topography. Doc Ophthalmol, 43(2), 249–76.

    PubMed  CAS  Google Scholar 

  2. Obata, H. M. D. P., & Tsuru, T. M. D. (2007). Corneal wound healing from the perspective of keratoplasty specimens with special reference to the function of the Bowman Layer and Descemet Membrane. Cornea, 26(Supplement 1), S82–S9.

    PubMed  Google Scholar 

  3. Maurice, D. M. (1957). The structure and transparency of the cornea. J Physiol, 136(2), 263–86.

    PubMed  CAS  Google Scholar 

  4. Rauz, S., & Saw, V. (2010). Serum eye drops, amniotic membrane and limbal epithelial stem cells—tools in the treatment of ocular surface disease. Cell Tissue Bank, 11(1), 13–27.

    PubMed  Google Scholar 

  5. Ang, L. P., & Tan, D. T. (2005). Stem cells of the eye. In A. Bongso & E. H. Lee (Eds.), Stem cells: from bench to bedside (1st ed., pp. 421–41). Jurong East: World Scientific Publishing Co. Pte. Ltd.

    Google Scholar 

  6. Inatomi, T., Spurr-Michaud, S., Tisdale, A. S., Zhan, Q., Feldman, S. T., & Gipson, I. K. (1996). Expression of secretory mucin genes by human conjunctival epithelia. Invest Ophthalmol Vis Sci, 37(8), 1684–92.

    PubMed  CAS  Google Scholar 

  7. Cotsarelis, G., Cheng, S. Z., Dong, G., Sun, T. T., & Lavker, R. M. (1989). Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: Implications on epithelial stem cells. Cell, 57(2), 201–9.

    PubMed  CAS  Google Scholar 

  8. Davanger, M., & Evensen, A. (1971). Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature, 229(5286), 560–1.

    PubMed  CAS  Google Scholar 

  9. Pellegrini, G., Golisano, O., Paterna, P., et al. (1999). Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J Cell Biol, 145(4), 769–82.

    PubMed  CAS  Google Scholar 

  10. Wei, Z. G., Cotsarelis, G., Sun, T. T., & Lavker, R. M. (1995). Label-retaining cells are preferentially located in fornical epithelium: implications on conjunctival epithelial homeostasis. Invest Ophthalmol Vis Sci, 36(1), 236–46.

    PubMed  CAS  Google Scholar 

  11. Majo, F., Rochat, A., Nicolas, M., Jaoude, G. A., & Barrandon, Y. (2008). Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature, 456(7219), 250–4.

    PubMed  CAS  Google Scholar 

  12. Maseruka, H., Ridgway, A., Tullo, A., & Bonshek, R. (2000). Developmental changes in patterns of expression of tenascin-c variants in the human cornea. Invest Ophthalmol Vis Sci, 41(13), 4101–7.

    PubMed  CAS  Google Scholar 

  13. Pajoohesh-Ganji, A., Ghosh, S. P., & Stepp, M. A. (2004). Regional distribution of α9β1 integrin within the limbus of the mouse ocular surface. Dev Dyn, 230(3), 518–28.

    PubMed  CAS  Google Scholar 

  14. Dua, H. S., Miri, A., Alomar, T., Yeung, A. M., & Said, D. G. (2009). The role of limbal stem cells in corneal epithelial maintenance: testing the dogma. Ophthalmology, 116(5), 856–63.

    PubMed  Google Scholar 

  15. Townsend, W. M. (1991). The limbal palisades of Vogt. Trans Am Ophthalmol Soc, 89, 721–56.

    PubMed  CAS  Google Scholar 

  16. Notara, M., Alatza, A., Gilfillan, J., et al. (2010). In sickness and in health: corneal epithelial stem cell biology, pathology and therapy. Exp Eye Res, 90(2), 188–95.

    PubMed  CAS  Google Scholar 

  17. Thoft, R. A., & Friend, J. (1983). The X, Y, Z hypothesis of corneal epithelial maintenance. Invest Ophthalmol Vis Sci, 24(10), 1442–3.

    PubMed  CAS  Google Scholar 

  18. Dua, H. S., Shanmuganathan, V. A., Powell-Richards, A. O., Tighe, P. J., & Joseph, A. (2005). Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol, 89(5), 529–32.

    PubMed  CAS  Google Scholar 

  19. Shortt, A. J., Secker, G. A., Munro, P. M., Khaw, P. T., Tuft, S. J., & Daniels, J. T. (2007). Characterization of the limbal epithelial stem cell niche: novel imaging techniques permit in vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells, 25(6), 1402–9.

    PubMed  Google Scholar 

  20. Rheinwald, J. G., & Green, H. (1975). Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell, 6(3), 331–43.

    PubMed  CAS  Google Scholar 

  21. Civin, C. I., Strauss, L. C., Brovall, C., Fackler, M. J., Schwartz, J. F., & Shaper, J. H. (1984). Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol, 133(1), 157–65.

    PubMed  CAS  Google Scholar 

  22. Pellegrini, G., Dellambra, E., Golisano, O., et al. (2001). p63 identifies keratinocyte stem cells. Proc Natl Acad Sci U S A, 98(6), 3156–61.

    PubMed  CAS  Google Scholar 

  23. Yoshida, S., Shimmura, S., Kawakita, T., et al. (2006). Cytokeratin 15 can be used to identify the limbal phenotype in normal and diseased ocular surfaces. Invest Ophthalmol Vis Sci, 47(11), 4780–6.

    PubMed  Google Scholar 

  24. Lauweryns, B., van den Oord, J., De Vos, R., & Missotten, L. (1993). A new epithelial cell type in the human cornea. Invest Ophthalmol Vis Sci, 34(6), 1983–90.

    PubMed  CAS  Google Scholar 

  25. Watanabe, K., Nishida, K., Yamato, M., et al. (2004). Human limbal epithelium contains side population cells expressing the ATP-binding cassette transporter ABCG2. FEBS Lett, 565(1), 6–10.

    PubMed  CAS  Google Scholar 

  26. Kurpakus, M. A., Stock, E. L., & Jones, J. C. (1990). Expression of the 55-kD/64-kD corneal keratins in ocular surface epithelium. Invest Ophthalmol Vis Sci, 31(3), 448–56.

    PubMed  CAS  Google Scholar 

  27. Schermer, A., Galvin, S., & Sun, T. T. (1986). Differentiation-related expression of a major 64 K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol, 103(1), 49–62.

    PubMed  CAS  Google Scholar 

  28. Mills, A. A., Zheng, B., Wang, X.-J., Vogel, H., Roop, D. R., & Bradley, A. (1999). p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature, 398(6729), 708–13.

    PubMed  CAS  Google Scholar 

  29. Yang, A., Schweitzer, R., Sun, D., et al. (1999). p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature, 398(6729), 714–8.

    PubMed  CAS  Google Scholar 

  30. Di Iorio, E., Barbaro, V., Ruzza, A., Ponzin, D., Pellegrini, G., & De Luca, M. (2005). Isoforms of DeltaNp63 and the migration of ocular limbal cells in human corneal regeneration. Proc Natl Acad Sci U S A, 102(27), 9523–8.

    PubMed  Google Scholar 

  31. Lyle, S., Christofidou-Solomidou, M., Liu, Y., Elder, D. E., Albelda, S., & Cotsarelis, G. (1998). The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J Cell Sci, 111(21), 3179–88.

    PubMed  CAS  Google Scholar 

  32. Schlötzer-Schrehardt, U., & Kruse, F. E. (2005). Identification and characterization of limbal stem cells. Exp Eye Res, 81(3), 247–64.

    PubMed  Google Scholar 

  33. Zhou, S., Schuetz, J. D., Bunting, K. D., et al. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med, 7(9), 1028–34.

    PubMed  CAS  Google Scholar 

  34. Di Girolamo, N., Sarris, M., Chui, J., Cheema, H., Coroneo, M. T., & Wakefield, D. (2008). Localization of the low-affinity nerve growth factor receptor p75 in human limbal epithelial cells. J Cell Mol Med, 12(6b), 2799–811.

    PubMed  Google Scholar 

  35. Botchkarev, V. A., Botchkareva, N. V., Albers, K. M., Chen, L.-H., Welker, P. I. A., & Paus, R. (2000). A role for p75 neurotrophin receptor in the control of apoptosis-driven hair follicle regression. FASEB J, 14(13), 1931–42.

    PubMed  CAS  Google Scholar 

  36. Botchkareva, N. V., Botchkarev, V. A., Chen, L.-H., Lindner, G., & Paus, R. (1999). A role for p75 neurotrophin receptor in the control of hair follicle morphogenesis. Dev Biol, 216(1), 135–53.

    PubMed  CAS  Google Scholar 

  37. Grueterich, M., Espana, E. M., & Tseng, S. C. G. (2003). Ex vivo expansion of limbal epithelial stem cells: amniotic membrane serving as a stem cell niche. Surv Ophthalmol, 48(6), 631–46.

    PubMed  Google Scholar 

  38. Lambiase, A., Rama, P., Bonini, S., Caprioglio, G., & Aloe, L. (1998). Topical treatment with nerve growth factor for corneal neurotrophic ulcers. N Engl J Med, 338(17), 1174–80.

    PubMed  CAS  Google Scholar 

  39. Chee, K. Y. H., Kicic, A., & Wiffen, S. J. (2006). Limbal stem cells: the search for a marker. Clin Experiment Ophthalmol, 34(1), 64–73.

    PubMed  Google Scholar 

  40. Slack, J. M. (2000). Stem cells in epithelial tissues. Science, 287(5457), 1431–3.

    PubMed  CAS  Google Scholar 

  41. Clausen, H., Vedtofte, P., Moe, D., Dabelsteen, E., Sun, T.-T., & Dale, B. (1986). Differentiation-dependent expression of keratins in human oral epithelia. J Investig Dermatol, 86(3), 249–54.

    PubMed  CAS  Google Scholar 

  42. Nakamura, T., Endo, K., & Kinoshita, S. (2007). Identification of human oral keratinocyte stem/progenitor cells by neurotrophin receptor p75 and the role of neurotrophin/p75 signaling. Stem Cells, 25(3), 628–38.

    PubMed  CAS  Google Scholar 

  43. Madhira, S. L., Vemuganti, G., Bhaduri, A., Gaddipati, S., Sangwan, V. S., & Ghanekar, Y. (2008). Culture and characterization of oral mucosal epithelial cells on human amniotic membrane for ocular surface reconstruction. Mol Vis, 14, 189–96.

    PubMed  CAS  Google Scholar 

  44. Tao, Q., Qiao, B., Lv, B., Zheng, C., Chen, Z., & Huang, H. (2009). p63 and its isoforms as markers of rat oral mucosa epidermal stem cells in vitro. Cell Biochem Funct, 27(8), 535–41.

    PubMed  CAS  Google Scholar 

  45. Nakamura, T., Inatomi, T., Sotozono, C., Amemiya, T., Kanamura, N., & Kinoshita, S. (2004). Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders. Br J Ophthalmol, 88(10), 1280–4.

    PubMed  CAS  Google Scholar 

  46. Nishida, K., Yamato, M., Hayashida, Y., et al. (2004). Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med, 351(12), 1187–96.

    PubMed  CAS  Google Scholar 

  47. Chen, H.-C. J., Chen, H.-L., Lai, J.-Y., et al. (2009). Persistence of transplanted oral mucosal epithelial cells in human cornea. Invest Ophthalmol Vis Sci, 50(10), 4660–8.

    PubMed  Google Scholar 

  48. Cotsarelis, G., Sun, T.-T., & Lavker, R. M. (1990). Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell, 61(7), 1329–37.

    PubMed  CAS  Google Scholar 

  49. Blazejewska, E. A., Schlötzer-Schrehardt, U., Zenkel, M., et al. (2009). Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells. Stem Cells, 27(3), 642–52.

    PubMed  CAS  Google Scholar 

  50. Pearton, D. J., Yang, Y., & Dhouailly, D. (2005). Transdifferentiation of corneal epithelium into epidermis occurs by means of a multistep process triggered by dermal developmental signals. Proc Natl Acad Sci U S A, 102(10), 3714–9.

    PubMed  CAS  Google Scholar 

  51. Yang, X., Moldovan, N., Zhao, Q., et al. (2008). Reconstruction of damaged cornea by autologous transplantation of epidermal adult stem cells. Mol Vis, 14, 1064–70.

    PubMed  CAS  Google Scholar 

  52. Evans, M. J., Van Winkle, L. S., Fanucchi, M. V., & Plopper, C. G. (2001). Cellular and molecular characteristics of basal cells in airway epithelium. Exp Lung Res, 27, 401–15.

    PubMed  CAS  Google Scholar 

  53. Shimizu, T., Nishihara, M., Kawaguchi, S., & Sakakura, Y. (1994). Expression of phenotypic markers during regeneration of rat tracheal epithelium following mechanical injury. Am J Respir Cell Mol Biol, 11(1), 85–94.

    PubMed  CAS  Google Scholar 

  54. Rock, J. R., Onaitis, M. W., Rawlins, E. L., et al. (2009). Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A, 106(31), 12771–5.

    PubMed  CAS  Google Scholar 

  55. Daniely, Y., Liao, G., Dixon, D., et al. (2004). Critical role of p63 in the development of a normal esophageal and tracheobronchial epithelium. Am J Physiol Cell Physiol, 287(1), C171–81.

    PubMed  CAS  Google Scholar 

  56. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–7.

    PubMed  CAS  Google Scholar 

  57. Wang, G., Bunnell, B. A., Painter, R. G., et al. (2005). Adult stem cells from bone marrow stroma differentiate into airway epithelial cells: potential therapy for cystic fibrosis. Proc Natl Acad Sci U S A, 102(1), 186–91.

    PubMed  CAS  Google Scholar 

  58. Ye, J., Yao, K., & Kim, J. C. (2005). Mesenchymal stem cell transplantation in a rabbit corneal alkali burn model: engraftment and involvement in wound healing. Eye, 20(4), 482–90.

    Google Scholar 

  59. Ma, Y., Xu, Y., Xiao, Z., et al. (2006). Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells, 24(2), 315–21.

    PubMed  Google Scholar 

  60. Gomes, J. A. P., Geraldes Monteiro, B., Melo, G. B., et al. (2010). Corneal Reconstruction with Tissue-Engineered Cell Sheets Composed of Human Immature Dental Pulp Stem Cells. Invest Ophthalmol Vis Sci, 51(3), 1408–14.

    PubMed  Google Scholar 

  61. Monteiro, B. G., Serafim, R. C., Melo, G. B., et al. (2009). Human immature dental pulp stem cells share key characteristic features with limbal stem cells. Cell Prolif, 42(5), 587–94.

    PubMed  CAS  Google Scholar 

  62. Liu, Y., Wang, X., & Jin, Y. (2008). Can bone marrow cells give rise to cornea epithelial cells? Med Hypotheses, 71(3), 411–3.

    PubMed  CAS  Google Scholar 

  63. Ye, J., Lee, S. Y., Kook, K. H., & Yao, K. (2008). Bone marrow-derived progenitor cells promote corneal wound healing following alkali injury. Graefes Arch Clin Exp Ophthalmol, 246(2), 217–22.

    PubMed  Google Scholar 

  64. Hon, C., Au, W. Y., & Liang, R. H. S. (2004). Conjunctival carcinoma as a novel post-stem cell transplantation malignancy. Bone Marrow Transplant, 34(2), 181–2.

    PubMed  CAS  Google Scholar 

  65. Whitcher, J. P., Srinivasan, M., & Upadhyay, M. P. (2001). Corneal blindness: a global perspective. Bull World Health Organ, 79, 214–21.

    PubMed  CAS  Google Scholar 

  66. Hill, R. E., Favor, J., Hogan, B. L. M., et al. (1991). Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature, 354(6354), 522–5.

    PubMed  CAS  Google Scholar 

  67. Li, W., Chen, Y. T., Hayashida, Y., et al. (2008). Down-regulation of Pax6 is associated with abnormal differentiation of corneal epithelial cells in severe ocular surface diseases. J Pathol, 214(1), 114–22.

    PubMed  CAS  Google Scholar 

  68. Puangsricharern, V., & Tseng, S. C. (1995). Cytologic evidence of corneal diseases with limbal stem cell deficiency. Ophthalmology, 102(10), 1476–85.

    PubMed  CAS  Google Scholar 

  69. Shortt, A. J., Secker, G. A., Notara, M. D., et al. (2007). Transplantation of ex vivo cultured limbal epithelial stem cells: a review of techniques and clinical results. Surv Ophthalmol, 52(5), 483–502.

    PubMed  Google Scholar 

  70. Espana, E. M., Di Pascuale, M., Grueterich, M., Solomon, A., & Tseng, S. C. G. (2004). Keratolimbal allograft in corneal reconstruction. Eye, 18(4), 406–17.

    PubMed  CAS  Google Scholar 

  71. Di Girolamo, N., Bosch, M., Zamora, K., Coroneo, M. T., Wakefield, D., & Watson, S. L. (2009). A contact lens-based technique for expansion and transplantation of autologous epithelial progenitors for ocular surface reconstruction. Transplantation, 87(10), 1571–8.

    PubMed  Google Scholar 

  72. Hatch, K. M., & Dana, R. (2009). The structure and function of the limbal stem cell and the disease states associated with limbal stem cell deficiency. Int Ophthalmol Clin, 49(1), 43–52.

    PubMed  Google Scholar 

  73. Ambati, B. K., Nozaki, M., Singh, N., et al. (2006). Corneal avascularity is due to soluble VEGF receptor-1. Nature, 443(7114), 993–7.

    PubMed  CAS  Google Scholar 

  74. Koizumi, N., Inatomi, T., Suzuki, T., Sotozono, C., & Kinoshita, S. (2001). Cultivated corneal epithelial stem cell transplantation in ocular surface disorders. Ophthalmology, 108(9), 1569–74.

    PubMed  CAS  Google Scholar 

  75. Shimazaki, J., Aiba, M., Goto, E., Kato, N., Shimmura, S., & Tsubota, K. (2002). Transplantation of human limbal epithelium cultivated on amniotic membrane for the treatment of severe ocular surface disorders. Ophthalmology, 109(7), 1285–90.

    PubMed  Google Scholar 

  76. Tsai, R. J., Li, L. M., & Chen, J. K. (2000). Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med, 343(2), 86–93.

    PubMed  CAS  Google Scholar 

  77. Rama, P., Bonini, S., Lambiase, A., et al. (2001). Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation, 72(9), 1478–85.

    PubMed  CAS  Google Scholar 

  78. Pellegrini, G., Traverso, C. E., Franzi, A. T., Zingirian, M., Cancedda, R., & Luca, M. D. (1997). Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet, 349(9057), 990–3.

    PubMed  CAS  Google Scholar 

  79. Schwab, I. R. (1999). Cultured corneal epithelia for ocular surface disease. Trans Am Ophthalmol Soc, 97, 891–986.

    PubMed  CAS  Google Scholar 

  80. Kenyon, K. R., & Tseng, S. C. (1989). Limbal autograft transplantation for ocular surface disorders. Ophthalmology, 96(5), 709–22.

    PubMed  CAS  Google Scholar 

  81. Jenkins, C., Tuft, S., Liu, C., & Buckley, R. (1993). Limbal transplantation in the management of chronic contact-lens-associated epitheliopathy. Eye, 7, 629–33.

    PubMed  Google Scholar 

  82. Tsubota, K., Satake, Y., Kaido, M., et al. (1999). Treatment of severe ocular-surface disorders with corneal epithelial stem-cell transplantation. N Engl J Med, 340(22), 1697–703.

    PubMed  CAS  Google Scholar 

  83. Tseng, S. C. G., Prabhasawat, P., Barton, K., Gray, T., & Meller, D. (1998). Amniotic membrane transplantation with or without limbal allografts for corneal surface reconstruction in patients with limbal stem cell deficiency. Arch Ophthalmol, 116(4), 431–41.

    PubMed  CAS  Google Scholar 

  84. Kim, J. C., & Tseng, S. C. G. (1995). Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas. Cornea, 14(5), 473–84.

    PubMed  CAS  Google Scholar 

  85. Stoiber, J., Muss, W. H., Pohla-Gubo, G., Ruckhofer, J., & Grabner, G. (2002). Histopathology of human corneas after amniotic membrane and limbal stem cell transplantation for severe chemical burn. Cornea, 21(5), 482–9.

    PubMed  Google Scholar 

  86. Gris, O., del Campo, Z., Wolley-Dod, C., et al. (2002). Amniotic membrane implantation as a therapeutic contact lens for the treatment of epithelial disorders. Cornea, 21(1), 22–7.

    PubMed  Google Scholar 

  87. Rama, P., Matuska, S., Paganoni, G., Spinelli, A., De Luca, M., & Pellegrini, G. (2010). Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med, 363(2), 147–55.

    PubMed  CAS  Google Scholar 

  88. Shortt, A. J., Tuft, S. J., & Daniels, J. T. (2010). Ex vivo cultured limbal epithelial transplantation. A clinical perspective. Ocul Surf, 8(2), 80–90.

    PubMed  Google Scholar 

  89. Boneva, R. S., Folks, T. M., & Chapman, L. E. (2001). Infectious disease issues in xenotransplantation. Clin Microbiol Rev, 14(1), 1–14.

    PubMed  CAS  Google Scholar 

  90. Manuelidis, E. E., Angelo, J. N., Gorgacz, E. J., Kim, J. H., & Manuelidis, L. (1977). Experimental creutzfeldt-jakob disease transmitted via the eye with infected cornea. N Engl J Med, 296(23), 1334–6.

    PubMed  CAS  Google Scholar 

  91. Ahmad, S., Kolli, S., Lako, M., Figueiredo, F., & Daniels, J. T. (2010). Stem cell therapies for ocular surface disease. Drug Discov Today, 15(7–8), 306–13.

    PubMed  CAS  Google Scholar 

  92. Green, H. (2008). The birth of therapy with cultured cells. Bioessays, 30(9), 897–903.

    PubMed  Google Scholar 

  93. Di Girolamo, N., Chui, J., Wakefield, D., & Coroneo, M. T. (2007). Cultured human ocular surface epithelium on therapeutic contact lenses. Br J Ophthalmol, 91(4), 459–64.

    PubMed  Google Scholar 

  94. Deshpande, P., Notara, M., Bullett, N., Daniels, J. T., Haddow, D. B., & MacNeil, S. (2009). Development of a surface-modified contact lens for the transfer of cultured limbal epithelial cells to the cornea for ocular surface diseases. Tissue Eng Part A, 15(10), 2889–902.

    PubMed  CAS  Google Scholar 

  95. Pino, C. J., Haselton, F. R., & Chang, M. S. (2005). Seeding of corneal wounds by epithelial cell transfer from micropatterned PDMS contact lenses. Cell Transplant, 14(8), 565–71.

    PubMed  Google Scholar 

  96. Shapiro, M., Friend, J., & Thoft, R. (1981). Corneal re-epithelialization from the conjunctiva. Invest Ophthalmol Vis Sci, 21(1), 135–42.

    PubMed  CAS  Google Scholar 

  97. Tanioka, H., Kawasaki, S., Yamasaki, K., et al. (2006). Establishment of a cultivated human conjunctival epithelium as an alternative tissue source for autologous corneal epithelial transplantation. Invest Ophthalmol Vis Sci, 47(9), 3820–7.

    PubMed  Google Scholar 

  98. Ang, L. P. K., Tanioka, H., Kawasaki, S., et al. (2010). Cultivated human conjunctival epithelial transplantation for total limbal stem cell deficiency. Invest Ophthalmol Vis Sci, 51(2), 758–64.

    PubMed  Google Scholar 

  99. Sun, T. T., & Green, H. (1977). Cultured epithelial cells of cornea, conjunctiva and skin: absence of marked intrinsic divergence of their differentiated states. Nature, 269(5628), 489–93.

    PubMed  CAS  Google Scholar 

  100. Ferrari, S., Barbaro, V., Di Iorio, E., Fasolo, A., & Ponzin, D. (2009). Advances in corneal surgery and cell therapy: challenges and perspectives for the eye banks. Expert Rev Ophthalmol, 4, 317–29.

    Google Scholar 

  101. Cauchi, P. A., Ang, G. S., Azuara-Blanco, A., & Burr, J. M. (2008). A systematic literature review of surgical interventions for limbal stem cell deficiency in humans. Am J Ophthalmol, 146(2), 251–9.

    PubMed  Google Scholar 

  102. Miri, A., Mathew, M., & Dua, H. S. (2010). Quality of life after limbal transplants. Ophthalmology, 117(3), 638.

    PubMed  Google Scholar 

  103. Reinhard, T., Spelsberg, H., Henke, L., et al. (2004). Long-term results of allogeneic penetrating limbo-keratoplasty in total limbal stem cell deficiency. Ophthalmology, 111(4), 775–82.

    PubMed  Google Scholar 

  104. Daya, S. M., Watson, A., Sharpe, J. R., et al. (2005). Outcomes and DNA analysis of ex vivo expanded stem cell allograft for ocular surface reconstruction. Ophthalmology, 112(3), 470–7.

    PubMed  Google Scholar 

  105. Pauklin, M., Fuchsluger, T. A., Westekemper, H., Steuhl, K. P., & Meller, D. (2010). Midterm results of cultivated autologous and allogeneic limbal epithelial transplantation in limbal stem cell deficiency. Dev Ophthalmol, 45, 57–70.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Stephanie Watson for providing the clinical images of patients with LSCD and Ms Sarah Davies for contributing some immunohistochemical data.

Disclaimers

The authors have no financial interests to declare.

Disclosures

The authors indicate no potential conflicts of interest.

Grant Support

Associate Professor Nick Di Girolamo is supported by a Career Development Award from the National Health and Medical Research Council of Australia (455358). This research was supported by the University of NSW, Faculty of Medicine Research Grant and Gold Star Award and by a Strategic Development Grant from the Australia Stem Cell Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Di Girolamo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Echevarria, T.J., Di Girolamo, N. Tissue-Regenerating, Vision-Restoring Corneal Epithelial Stem Cells. Stem Cell Rev and Rep 7, 256–268 (2011). https://doi.org/10.1007/s12015-010-9199-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9199-1

Keywords

Navigation