Skip to main content
Log in

Isolation and in Vitro Characterization of Bovine Amniotic Fluid Derived Stem Cells at Different Trimesters of Pregnancy

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Amniotic fluid (AF) is a source of multipotent mesenchymal stem cells (MSCs), very promising cells for tissue engineering in clinical application. The aim of this work was to isolate and characterize cells isolated from bovine AF as alternative sources of primitive multipotent stem cells in a species that could be a large-animal model for biomedical and biotechnology researches. Samples were recovered, at slaughterhouse, from 39 pregnant cows at different trimesters of pregnancy and cells were cultured in vitro. At passages (P) 3 and 7 differentiation towards chondrogenic, osteogenic and adipogenic lineages was induced. Flow cytometry analysis for CD90, CD105, CD73, CD44, CD34, CD45 and CD14 was performed, immunocytochemistry (ICC) for Oct4, SSEA4, α-SMA, Vimentin, N- and E- Cadherin and CK and qPCR analysis for OCT4, NANOG and SOX2 were carried out. The cell yield was significantly higher in the first trimester compared to the second and the third one (P < 0.05). Cells were isolated from 25/39 samples and cell population appeared heterogeneous. Two main cell types were identified in samples from all trimesters: round- (RS) and spindle-shaped (SS) cells. 17/25 samples showed both populations (mixed, MX). Both cell types showed MSC-markers and differentiation capability with some variability related to the passages. The SS-population also expressed low levels of stemness markers such as NANOG and SSEA4 but not OCT4. Bovine AF shows a heterogeneous cell population containing also MSCs, multipotent cells that represent an intermediate stage between embryonic stem cells and adult ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Underwood, M. A., Gilbert, W. M., & Sherman, M. P. (2005). Amniotic fluid: not just fetal urine anymore. Journal of Perinatology: Official Journal of the California Perinatal Association, 25(5), 341–348.

    Article  Google Scholar 

  2. Roubelakis, M. G., Trohatou, O., & Anagnou, N. P. (2012). Amniotic fluid and amniotic membrane stem cells: marker discovery. Stem Cells International, 2012, 107836.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Klemmt, P. A. B., Vafaizadeh, V., & Groner, B. (2011). The potential of amniotic fluid stem cells for cellular therapy and tissue engineering. Expert Opinion on Biological Therapy, 11(10), 1297–1314.

    Article  PubMed  CAS  Google Scholar 

  4. Roubelakis, M. G., Bitsika, V., Zagoura, D., et al. (2011). In vitro and in vivo properties of distinct populations of amniotic fluid mesenchymal progenitor cells. Journal of Cellular and Molecular Medicine, 15(9), 1896–1913.

    Article  PubMed  CAS  Google Scholar 

  5. Fauza, D. (2004). Amniotic fluid and placental stem cells. Best practice & research. Clinical Obstetrics and Gynaecology, 18(6), 877–891.

    PubMed  Google Scholar 

  6. Antonucci, I., Stuppia, L., Kaneko, Y., et al. (2011). Amniotic fluid as a rich source of mesenchymal stromal cells for transplantation therapy. Cell Transplantation, 20(6), 789–795.

    Article  PubMed  Google Scholar 

  7. Pozzobon, M., Piccoli, M., & De Coppi, P. (2014). Stem cells from fetal membranes and amniotic fluid: markers for cell isolation and therapy. Cell and Tissue Banking. doi:10.1007/s10561-014-9428-y.

    PubMed  Google Scholar 

  8. Kim, J., Lee, Y., Kim, H., et al. (2007). Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Proliferation, 40(1), 75–90.

    Article  PubMed  CAS  Google Scholar 

  9. Kunisaki, S. M., Armant, M., Kao, G. S., Stevenson, K., Kim, H., & Fauza, D. O. (2007). Tissue engineering from human mesenchymal amniocytes: a prelude to clinical trials. Journal of Pediatric Surgery, 42(6), 974–980.

    Article  PubMed  Google Scholar 

  10. You, Q., Cai, L., Zheng, J., Tong, X., Zhang, D., & Zhang, Y. (2008). Isolation of human mesenchymal stem cells from third-trimester amniotic fluid. International Journal of Gynaecology and Obstetrics: The Official Organ of the International Federation of Gynaecology and Obstetrics, 103(2), 149–152.

    Article  CAS  Google Scholar 

  11. Davydova, D. A., Vorotelyak, E. A., Smirnova, Y. A., et al. (2009). Cell phenotypes in human amniotic fluid. Acta Naturae, 1(2), 98–103.

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Bossolasco, P., Montemurro, T., Cova, L., et al. (2006). Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential. Cell Research, 16(4), 329–336.

    Article  PubMed  CAS  Google Scholar 

  13. Bottai, D., Cigognini, D., Nicora, E., et al. (2012). Third trimester amniotic fluid cells with the capacity to develop neural phenotypes and with heterogeneity among sub-populations. Restorative Neurology and Neuroscience, 30(1), 55–68.

    PubMed  Google Scholar 

  14. Zia, S., Toelen, J., Mori da Cunha, M., Dekoninck, P., De Coppi, P., & Deprest, J. (2013). Routine clonal expansion of mesenchymal stem cells derived from amniotic fluid for perinatal applications. Prenatal Diagnosis, 33(10), 921–928.

    PubMed  Google Scholar 

  15. Roubelakis, M. G., Pappa, K. I., Bitsika, V., et al. (2007). Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells and Development, 16(6), 931–952.

    Article  PubMed  CAS  Google Scholar 

  16. Iacono, E., Brunori, L., Pirrone, A., et al. (2012). Isolation, characterization and differentiation of mesenchymal stem cells from amniotic fluid, umbilical cord blood and Wharton’s jelly in the horse. Reproduction, 143(4), 455–468.

    Article  PubMed  CAS  Google Scholar 

  17. Lovati, A. B., Corradetti, B., Lange Consiglio, A., et al. (2011). Comparison of equine bone marrow-, umbilical cord matrix and amniotic fluid-derived progenitor cells. Veterinary Research Communications, 35(2), 103–121.

    Article  PubMed  Google Scholar 

  18. Dev, K., Giri, S. K., Kumar, A., Yadav, A., Singh, B., & Gautam, S. K. (2012). Derivation, characterization and differentiation of buffalo (Bubalus bubalis) amniotic fluid derived stem cells. Reproduction in Domestic Animals, 47(5), 704–711.

    Article  PubMed  CAS  Google Scholar 

  19. Sartore, S., Lenzi, M., Angelini, A., et al. (2005). Amniotic mesenchymal cells autotransplanted in a porcine model of cardiac ischemia do not differentiate to cardiogenic phenotypes. European Journal of Cardio-Thoracic Surgery: Official Journal of the European Association for Cardio-thoracic Surgery, 28(5), 677–684.

    Article  Google Scholar 

  20. Chen, J., Lu, Z., Cheng, D., Peng, S., & Wang, H. (2011). Isolation and characterization of porcine amniotic fluid-derived multipotent stem cells. PloS One, 6(5), e19964.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Kaviani, A., Perry, T. E., Dzakovic, A., Jennings, R. W., Ziegler, M. M., & Fauza, D. O. (2001). The amniotic fluid as a source of cells for fetal tissue engineering. Journal of Pediatric Surgery, 36(11), 1662–1665.

    Article  PubMed  CAS  Google Scholar 

  22. Mauro, A., Turriani, M., Ioannoni, A., et al. (2010). Isolation, characterization, and in vitro differentiation of ovine amniotic stem cells. Veterinary Research Communications, 34(Suppl 1), S25–S28.

    Article  PubMed  Google Scholar 

  23. Choi, S. A., Choi, H. S., Kim, K. J., et al. (2013). Isolation of canine mesenchymal stem cells from amniotic fluid and differentiation into hepatocyte-like cells. In vitro cellular & developmental biology. Animal, 49(1), 42–51.

    Google Scholar 

  24. Filioli Uranio, M., Valentini, L., Lange-Consiglio, A., et al. (2011). Isolation, proliferation, cytogenetic, and molecular characterization and in vitro differentiation potency of canine stem cells from foetal adnexa: a comparative study of amniotic fluid, amnion, and umbilical cord matrix. Molecular Reproduction and Development, 78(5), 361–373.

    Article  PubMed  CAS  Google Scholar 

  25. Iacono, E., Cunto, M., Zambelli, D., Ricci, F., Tazzari, P. L., & Merlo, B. (2012). Could fetal fluid and membranes be an alternative source for mesenchymal stem cells (MSCs) in the feline species? A preliminary study. Veterinary Research Communications, 36(2), 107–118.

    Article  PubMed  Google Scholar 

  26. Corradetti, B., Meucci, A., Bizzaro, D., Cremonesi, F., & Lange Consiglio, A. (2013). Mesenchymal stem cells from amnion and amniotic fluid in the bovine. Reproduction, 145(4), 391–400.

    Article  PubMed  CAS  Google Scholar 

  27. Gao, Y., Zhu, Z., Zhao, Y., Hua, J., Ma, Y., & Guan, W. (2014). Multilineage potential research of bovine amniotic fluid mesenchymal stem cells. International Journal of Molecular Sciences, 15(3), 3698–3710.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.

    Article  PubMed  CAS  Google Scholar 

  29. Prusa, A. R., Marton, E., Rosner, M., Bernaschek, G., & Hengstschläger, M. (2003). Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Human Reproduction, 18(7), 1489–1493.

    Article  PubMed  Google Scholar 

  30. Prusa, A. R., & Hengstschlager, M. (2002). Amniotic fluid cells and human stem cell research: a new connection. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 8(11), RA253–RA257.

    Google Scholar 

  31. Da Sacco, S., Sedrakyan, S., Boldrin, F., et al. (2010). Human amniotic fluid as a potential new source of organ specific precursor cells for future regenerative medicine applications. The Journal of Urology, 183(3), 1193–1200.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Burk, J., Ribitsch, I., Gittel, C., et al. (2013). Growth and differentiation characteristics of equine mesenchymal stromal cells derived from different sources. Veterinary Journal, 195(1), 98–106.

    Article  CAS  Google Scholar 

  33. Kavanagh, D. P. J., Robinson, J., & Kalia, N. (2014). Mesenchymal stem cell priming: fine-tuning adhesion and function. Stem Cell Reviews. doi:10.1007/s12015-014-9510-7.

    PubMed  Google Scholar 

  34. Pappa, K. I., & Anagnou, N. P. (2009). Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regenerative Medicine, 4(3), 423–433.

    Article  PubMed  Google Scholar 

  35. Cremonesi, F., Corradetti, B., & Lange Consiglio, A. (2011). Fetal adnexa derived stem cells from domestic animal: progress and perspectives. Theriogenology, 75(8), 1400–1415.

    Article  PubMed  CAS  Google Scholar 

  36. Yi, T., & Song, S. U. (2012). Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Archives of Pharmacal Research, 35(2), 213–221.

    Article  PubMed  CAS  Google Scholar 

  37. Ashwood, E. R., Knight, G. J., & Burtis, C. A. (2006). Chapter 54: clinical chemistry of pregnancy. In E. R. Ashwood & D. E. Bruns (Eds.), Teitz textbook of clinical chemistry and molecular diagnostics (4th ed., pp. 2153–2206). St. Louis: Elsevier Saunders.

    Google Scholar 

  38. Noden, D. M., & De Lahunta, A. (1985). The embryology of domestic animals: developmental mechanisms and malformations. Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  39. Vidal, M. A., Kilroy, G. E., Lopez, M. J., Johnson, J. R., Moore, R. M., & Gimble, J. M. (2007). Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Veterinary Surgery, 36(7), 613–622.

    Article  PubMed  Google Scholar 

  40. Liang, C. C., Park, A. Y., & Guan, J. L. (2007). In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nature Protocols, 2(2), 329–333.

    Article  PubMed  CAS  Google Scholar 

  41. Mizuno, H., & Hyakusoku, H. (2003). Mesengenic potential and future clinical perspective of human processed lipoaspirate cells. Journal of Nippon Medical School, 70(4), 300–306.

    Article  PubMed  Google Scholar 

  42. Thélie, A., Papillier, P., Pennetier, S., et al. (2007). Differential regulation of abundance and deadenylation of maternal transcripts during bovine oocyte maturation in vitro and in vivo. BMC Developmental Biology, 7, 125.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pant, D., & Keefer, C. L. (2009). Expression of pluripotency-related genes during bovine inner cell mass explant culture. Cloning and Stem Cells, 11(3), 355–365.

    Article  PubMed  CAS  Google Scholar 

  44. Sutradhar, B. C., Hong, G., Ge, Z., & Kim, G. (2012). Enhancement of chondrogenesis via co-culture of bovine chondrocytes with Demineralized bone matrix in chitosan-alginate beads. Journal of Medical and Biological Engineering, 33(5), 518–525.

    Article  Google Scholar 

  45. Brace, R. A., & Wolf, E. J. (1989). Normal amniotic fluid volume changes throughout pregnancy. American Journal of Obstetrics and Gynecology, 161(2), 382–388.

    Article  PubMed  CAS  Google Scholar 

  46. Kaviani, A., Guleserian, K., Perry, T. E., Jennings, R. W., Ziegler, M. M., & Fauza, D. O. (2003). Fetal tissue engineering from amniotic fluid. Journal of the American College of Surgeons, 196(4), 592–597.

    Article  PubMed  Google Scholar 

  47. Perin, L., Sedrakyan, S., Da Sacco, S., & De Filippo, R. (2008). Characterization of human amniotic fluid stem cells and their pluripotential capability. Methods in Cell Biology, 86, 85–99.

    Article  PubMed  CAS  Google Scholar 

  48. Civin, C. L., Trischmann, T. M., Fackler, M. J., et al. (1989). Summary of CD34 cluster workshop section. In W. Knapp et al. (Eds.), Leucocyte Typing IV - white cell differentiation antigens (pp. 818–825). Oxford: Oxford University Press.

    Google Scholar 

  49. Siegel, N., Rosner, M., Hanneder, M., Freilinger, A., & Hengstschläger, M. (2008). Human amniotic fluid stem cells: a new perspective. Amino Acids, 35(2), 291–293.

    Article  PubMed  CAS  Google Scholar 

  50. Tsai, M. S., Lee, J. L., Chang, Y. J., & Hwang, S. M. (2004). Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Human Reproduction, 19(6), 1450–1456.

    Article  PubMed  Google Scholar 

  51. You, Q., Tong, X., Guan, Y., et al. (2009). The biological characteristics of human third trimester amniotic fluid stem cells. The Journal of International Medical Research, 37(1), 105–112.

    Article  PubMed  CAS  Google Scholar 

  52. Zagoura, D. S., Trohatou, O., Bitsika, V., et al. (2013). AF-MSCs fate can be regulated by culture conditions. Cell Death & Disease, 4, e571. doi:10.1038/cddis.2013.93.

    Article  CAS  Google Scholar 

  53. Eastham, A. M., Spencer, H., Soncin, F., Ritson, S., Merry, C. L. R., Stern, P. L., & Ward, C. M. (2007). Epithelial-mesenchymal transition events during human embryonic stem cell differentiation. Cancer Research, 67(23), 11254–11262.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by grant PRIN 2009 from MIUR and EPIHEALTH, EU FP7 n°278418.

The authors wish to thanks Professor Giuseppe Sarli (Pathological Anatomy Service, DIMEVET) for Vimentin clone 9 (DAKO M0725) antibody, and Professor Alessandra Scagliarini (Public Health and Animal pathology, DIMEVET) for positive controls for immunostaining analysis on CK protein. Thanks are also due to Dott. Chiara Sartori for the help given with first molecular analyses and to the students Valentina Montanari and Maria Chiara Corlianò for the help given during the culture and the differentiation of the samples.

Disclosures

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Rossi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossi, B., Merlo, B., Colleoni, S. et al. Isolation and in Vitro Characterization of Bovine Amniotic Fluid Derived Stem Cells at Different Trimesters of Pregnancy. Stem Cell Rev and Rep 10, 712–724 (2014). https://doi.org/10.1007/s12015-014-9525-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9525-0

Keywords

Navigation