Skip to main content

Advertisement

Log in

Solid Tumors Challenges and New Insights of CAR T Cell Engineering

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Adoptive cell therapy using CAR T cells has emerged as a novel treatment strategy with promising results against B cell malignancies; however, CAR T cells have not shown much success against solid malignancies. There are several obstacles which diminish the efficacy of CAR T cells, but the immunosuppressive tumor microenvironment (TME) of the tumor stands out as the most important factor. TME includes Tumor-Associated Stroma, Immunosuppressive cells and cytokines, tumor hypoxia and metabolism, and Immune Inhibitory Checkpoints which affect the CAR T cell efficacy and activity in solid tumors. A precise understanding of the TME could pave the way to engineer novel modifications of CAR T cells which can overcome the immunosuppressive TME. In this review, we will describe different sections of the TME and introduce novel approaches to improve the CAR T cells potential against solid tumors based on recent clinical and preclinical data. Also, we will provide new suggestions on how to modify CARs to augment of CAR T cells efficacy. Since there are also some challenges beyond the TME that are important for CAR function, we will also discuss and provide data about the improvement of CAR T cells trafficking and delivery to the tumor site and how to solve the problem of tumor antigen heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Xia, A.-L., Wang, X.-C., Lu, Y.-J., Lu, X.-J., & Sun, B. (2017). Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: Challenges and opportunities. Oncotarget., 8(52), 90521.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chen, X., Han, J., Chu, J., Zhang, L., Zhang, J., Chen, C., et al. (2016). A combinational therapy of EGFR-CAR NK cells and oncolytic herpes simplex virus 1 for breast cancer brain metastases. Oncotarget., 7(19), 27764.

    PubMed  PubMed Central  Google Scholar 

  3. Elahi, R., Khosh, E., Tahmasebi, S., & Esmaeilzadeh, A. (2018). Immune cell hacking: Challenges and clinical approaches to create smarter generations of chimeric antigen receptor T cells. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.01717.

  4. Junghans, R. P., Ma, Q., Rathore, R., Gomes, E. M., Bais, A. J., Lo, A. S., et al. (2016). Phase I trial of anti-PSMA designer CAR-T cells in prostate Cancer: Possible role for interacting interleukin 2-T cell pharmacodynamics as a determinant of clinical response. The Prostate., 76(14), 1257–1270.

    Article  CAS  PubMed  Google Scholar 

  5. Romero, D. (2018). Haematological cancer: Favourable outcomes with CAR T cells. Nature Reviews. Clinical Oncology, 15(2), 65.

    Article  PubMed  Google Scholar 

  6. Scarfò, I., & Maus, M. V. (2017). Current approaches to increase CAR T cell potency in solid tumors: Targeting the tumor microenvironment. Journal for Immunotherapy of Cancer., 5(1), 28.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Trédan, O., Galmarini, C. M., Patel, K., & Tannock, I. F. (2007). Drug resistance and the solid tumor microenvironment. Journal of the National Cancer Institute, 99(19), 1441–1454.

    Article  CAS  PubMed  Google Scholar 

  8. Frigault, M. J., Lee, J., Basil, M. C., Carpenito, C., Motohashi, S., Scholler, J., Kawalekar, O. U., Guedan, S., McGettigan, S. E., Posey, A. D., Ang, S., Cooper, L. J. N., Platt, J. M., Johnson, F. B., Paulos, C. M., Zhao, Y., Kalos, M., Milone, M. C., & June, C. H. (2015). Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells. Cancer Immunology Research, 3, 356–367. https://doi.org/10.1158/2326-6066.CIR-14-0186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Di, S., & Li, Z. (2016). Treatment of solid tumors with chimeric antigen receptor-engineered T cells: Current status and future prospects. Science China. Life Sciences, 59(4), 360–369.

    Article  CAS  PubMed  Google Scholar 

  10. Mirzaei, H. R., Rodriguez, A., Shepphird, J., Brown, C. E., & Badie, B. (2017). Chimeric antigen receptors T cell therapy in solid tumor: Challenges and clinical applications. Frontiers in Immunology, 8, 1850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lo, A., Wang, L.-C. S., Scholler, J., Monslow, J., Avery, D., Newick, K., O'Brien, S., Evans, R. A., Bajor, D. J., Clendenin, C., Durham, A. C., Buza, E. L., Vonderheide, R. H., June, C. H., Albelda, S. M., & Pure, E. (2015). Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells. Cancer Research, 75(14), 2800–2810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, L.-C. S., Lo, A., Scholler, J., Sun, J., Majumdar, R. S., Kapoor, V., Antzis, M., Cotner, C. E., Johnson, L. A., Durham, A. C., Solomides, C. C., June, C. H., Pure, E., & Albelda, S. M. (2014). Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunology Research, 2(2), 154–166.

    Article  CAS  PubMed  Google Scholar 

  13. Caruana, I., Savoldo, B., Hoyos, V., Weber, G., Liu, H., Kim, E. S., Ittmann, M. M., Marchetti, D., & Dotti, G. (2015). Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nature Medicine, 21(5), 524–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nishio, N., & Dotti, G. (2015). Oncolytic virus expressing RANTES and IL-15 enhances function of CAR-modified T cells in solid tumors. Oncoimmunology., 4(2), e988098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koneru, M., O’Cearbhaill, R., Pendharkar, S., Spriggs, D. R., & Brentjens, R. J. (2015). A phase I clinical trial of adoptive T cell therapy using IL-12 secreting MUC-16 ecto directed chimeric antigen receptors for recurrent ovarian cancer. Journal of Translational Medicine, 13(1), 102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, L., Yu, Z., Muranski, P., Palmer, D., Restifo, N., Rosenberg, S., et al. (2013). Inhibition of TGF-β signaling in genetically engineered tumor antigen-reactive T cells significantly enhances tumor treatment efficacy. Gene Therapy, 20(5), 575–580.

    Article  CAS  PubMed  Google Scholar 

  17. Mohammed, S., Sukumaran, S., Bajgain, P., Watanabe, N., Heslop, H. E., Rooney, C. M., Brenner, M. K., Fisher, W. E., Leen, A. M., & Vera, J. F. (2017). Improving chimeric antigen receptor-modified T cell function by reversing the immunosuppressive tumor microenvironment of pancreatic cancer. Molecular Therapy, 25(1), 249–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Adachi, K., Kano, Y., Nagai, T., Okuyama, N., Sakoda, Y., & Tamada, K. (2018). IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nature Biotechnology, 36(4), 346–351.

    Article  CAS  PubMed  Google Scholar 

  19. Arab, S., Kheshtchin, N., Ajami, M., Ashurpoor, M., Safvati, A., Namdar, A., Mirzaei, R., Mousavi Niri, N., Jadidi-Niaragh, F., Ghahremani, M. H., & Hadjati, J. (2017). Increased efficacy of a dendritic cell–based therapeutic cancer vaccine with adenosine receptor antagonist and CD73 inhibitor. Tumor Biology, 39(3), 1010428317695021.

    Article  CAS  PubMed  Google Scholar 

  20. Beavis, P. A., Milenkovski, N., Henderson, M. A., John, L. B., Allard, B., Loi, S., Kershaw, M. H., Stagg, J., & Darcy, P. K. (2015). Adenosine receptor 2A blockade increases the efficacy of anti–PD-1 through enhanced antitumor T-cell responses. Cancer Immunology Research, 3(5), 506–517.

    Article  CAS  PubMed  Google Scholar 

  21. Ligtenberg, M. A., Mougiakakos, D., Mukhopadhyay, M., Witt, K., Lladser, A., Chmielewski, M., Riet, T., Abken, H., & Kiessling, R. (2016). Coexpressed catalase protects chimeric antigen receptor–redirected T cells as well as bystander cells from oxidative stress–induced loss of antitumor activity. The Journal of Immunology., 196(2), 759–766.

    Article  CAS  PubMed  Google Scholar 

  22. Ninomiya, S., Narala, N., Huye, L., Yagyu, S., Savoldo, B., Dotti, G., Heslop, H. E., Brenner, M. K., Rooney, C. M., & Ramos, C. A. (2015). Tumor indoleamine 2, 3-dioxygenase (IDO) inhibits CD19-CAR T cells and is downregulated by lymphodepleting drugs. Blood., 125(25), 3905–3916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Newick, K., O'Brien, S., Sun, J., Kapoor, V., Maceyko, S., Lo, A., Pure, E., Moon, E., & Albelda, S. M. (2016). Augmentation of CAR T-cell trafficking and antitumor efficacy by blocking protein kinase a localization. Cancer Immunology Research, 4(6), 541–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scheffel, M. J., Scurti, G., Simms, P., Garrett-Mayer, E., Mehrotra, S., Nishimura, M. I., & Voelkel-Johnson, C. (2016). Efficacy of adoptive T-cell therapy is improved by treatment with the antioxidant N-acetyl cysteine, which limits activation-induced T-cell death. Cancer Research, 76(20), 6006–6016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peggs, K. S., Quezada, S. A., Chambers, C. A., Korman, A. J., & Allison, J. P. (2009). Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti–CTLA-4 antibodies. The Journal of Experimental Medicine, 206(8), 1717–1725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ren, J., Zhang, X., Liu, X., Fang, C., Jiang, S., June, C. H., et al. (2017). A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget., 8(10), 17002.

    Article  PubMed  PubMed Central  Google Scholar 

  27. John, L. B., Devaud, C., Duong, C. P., Yong, C. S., Beavis, P. A., Haynes, N. M., et al. (2013). Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clinical Cancer Research, 19(20), 5636–5646.

    Article  CAS  PubMed  Google Scholar 

  28. Rupp, L. J., Schumann, K., Roybal, K. T., Gate, R. E., Chun, J. Y., Lim, W. A., et al. (2017). CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Scientific Reports, 7(1), 737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, X., Ranganathan, R., Jiang, S., Fang, C., Sun, J., Kim, S., Newick, K., Lo, A., June, C. H., Zhao, Y., & Moon, E. K. (2016). A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Research, 76(6), 1578–1590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Woo, S.-R., Turnis, M. E., Goldberg, M. V., Bankoti, J., Selby, M., Nirschl, C. J., Bettini, M. L., Gravano, D. M., Vogel, P., Liu, C. L., Tangsombatvisit, S., Grosso, J. F., Netto, G., Smeltzer, M. P., Chaux, A., Utz, P. J., Workman, C. J., Pardoll, D. M., Korman, A. J., Drake, C. G., & Vignali, D. A. A. (2012). Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Research, 72(4), 917–927.

    Article  CAS  PubMed  Google Scholar 

  31. Yoon, D. H., Osborn, M. J., Tolar, J., & Kim, C. J. (2018). Incorporation of immune checkpoint blockade into chimeric antigen receptor T cells (CAR-Ts): Combination or built-in CAR-T. International Journal of Molecular Sciences, 19(2), 340.

    Article  CAS  PubMed Central  Google Scholar 

  32. Fourcade, J., Sun, Z., Pagliano, O., Guillaume, P., Luescher, I. F., Sander, C., et al. 2012).CD8+ T cells specific for tumor antigens can be rendered dysfunctional by the tumor microenvironment through upregulation of the inhibitory receptors BTLA and PD-1. Cancer Research. 2011:canres. 2637.011.

  33. Beavis, P. A., Henderson, M. A., Giuffrida, L., Mills, J. K., Sek, K., Cross, R. S., Davenport, A. J., John, L. B., Mardiana, S., Slaney, C. Y., Johnstone, R. W., Trapani, J. A., Stagg, J., Loi, S., Kats, L., Gyorki, D., Kershaw, M. H., & Darcy, P. K. (2017). Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. The Journal of Clinical Investigation., 127(3), 929–941.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Johnston, R. J., Comps-Agrar, L., Hackney, J., Yu, X., Huseni, M., Yang, Y., Park, S., Javinal, V., Chiu, H., Irving, B., Eaton, D. L., & Grogan, J. L. (2014). The immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector function. Cancer Cell, 26(6), 923–937.

    Article  CAS  PubMed  Google Scholar 

  35. Kershaw, M. H., Wang, G., Westwood, J. A., Pachynski, R. K., Tiffany, H. L., Marincola, F. M., Wang, E., Young, H. A., Murphy, P. M., & Hwu, P. (2002). Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Human Gene Therapy, 13(16), 1971–1980.

    Article  CAS  PubMed  Google Scholar 

  36. Long, A. H., Highfill, S. L., Cui, Y., Smith, J. P., Walker, A. J., Ramakrishna, S., el-Etriby, R., Galli, S., Tsokos, M. G., Orentas, R. J., & Mackall, C. L. (2016). Reduction of MDSCs with all-trans retinoic acid improves CAR therapy efficacy for sarcomas. Cancer Immunology Research, 4(10), 869–880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhou, Q., Munger, M. E., Highfill, S. L., Tolar, J., Weigel, B. J., Riddle, M., Sharpe, A. H., Vallera, D. A., Azuma, M., Levine, B. L., June, C. H., Murphy, W. J., Munn, D. H., & Blazar, B. R. (2010). Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia. Blood., 116(14), 2484–2493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Markley, J. C., & Sadelain, M. (2010). IL-7 and IL-21 are superior to IL-2 and IL-15 in promoting human T cell–mediated rejection of systemic lymphoma in immunodeficient mice. Blood., 115(17), 3508–3519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yao, X., Ahmadzadeh, M., Lu, Y.-C., Liewehr, D. J., Dudley, M. E., Liu, F., Schrump, D. S., Steinberg, S. M., Rosenberg, S. A., & Robbins, P. F. (2012). Levels of peripheral CD4+ FoxP3+ regulatory T cells are negatively associated with clinical response to adoptive immunotherapy of human cancer. Blood., 119(24), 5688–5696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Spear, P., Barber, A., Rynda-Apple, A., & Sentman, C. L. (2012). Chimeric antigen receptor T cells shape myeloid cell function within the tumor microenvironment through IFN-gamma and GM-CSF. Journal of Immunology (Baltimore, Md. : 1950), 188(12), 6389–6398.

    Article  CAS  Google Scholar 

  41. Chmielewski, M., & Abken, H. (2017). CAR T cells releasing IL-18 convert to T-bet high FoxO1 low effectors that exhibit augmented activity against advanced solid tumors. Cell Reports, 21(11), 3205–3219.

    Article  CAS  PubMed  Google Scholar 

  42. Marofi, F., Vahedi, G., Biglari, A., Esmaeilzadeh, A., & Athari, S. S. (2017). Mesenchymal stromal/stem cells: A new era in the cell-based targeted gene therapy of cancer. Frontiers in Immunology, 8, 1770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bhowmick, N. A., Neilson, E. G., & Moses, H. L. (2004). Stromal fibroblasts in cancer initiation and progression. Nature., 432(7015), 332–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kakarla, S., Chow, K. K., Mata, M., Shaffer, D. R., Song, X.-T., Wu, M.-F., et al. (2013). Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Molecular Therapy, 21(8), 1611–1620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vlodavsky, I., Elkin, M., & Ilan, N. (2011). Impact of heparanase and the tumor microenvironment on cancer metastasis and angiogenesis: Basic aspects and clinical applications. Rambam Maimonides Medical Journal., 2(1). https://doi.org/10.5041/RMMJ.10019.

  46. Arvatz, G., Weissmann, M., Ilan, N., & Vlodavsky, I. (2016). Heparanase and cancer progression: New directions, new promises. Human Vaccines & Immunotherapeutics, 12(9), 2253–2256.

    Article  Google Scholar 

  47. Bollard, C. M., Rössig, C., Calonge, M. J., Huls, M. H., Wagner, H.-J., Massague, J., Brenner, M. K., Heslop, H. E., & Rooney, C. M. (2002). Adapting a transforming growth factor β–related tumor protection strategy to enhance antitumor immunity. Blood., 99(9), 3179–3187.

    Article  CAS  PubMed  Google Scholar 

  48. Piri, Z., Esmaeilzadeh, A., & Hajikhanmirzaei, M. (2012). Interleukin-25 as a candidate gene in immunogene therapy of pancreatic cancer. Journal of Medical Hypotheses and Ideas., 6(2), 75–79.

    Article  CAS  Google Scholar 

  49. Mirzaei, M. H., & Esmaeilzadeh, A. (2014). Overexpression of MDA-7/IL-24 as an anticancer cytokine in gene therapy of thyroid carcinoma. Journal of Medical Hypotheses and Ideas., 8(1), 7–13.

    Article  CAS  Google Scholar 

  50. Esmaeilzadeh, A., Ebtekar, M., Biglari, A., & Saraf, S. (2014). Anti-proliferative effect of rmIL-27 protein on 4T1 mouse breast cancer cells as a candidate for cancer immunotherapy. ZUMS Journal., 22(91), 52–60.

    Google Scholar 

  51. Zhang, C., Liu, J., Zhong, J. F., & Zhang, X. (2017). Engineering CAR-T cells. Biomarker Research, 5(1), 22.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hinrichs, C. S., Spolski, R., Paulos, C. M., Gattinoni, L., Kerstann, K. W., Palmer, D. C., Klebanoff, C. A., Rosenberg, S. A., Leonard, W. J., & Restifo, N. P. (2008). IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood., 111(11), 5326–5333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, E., Gu, J., & Xu, H. (2018). Prospects for chimeric antigen receptor-modified T cell therapy for solid tumors. Molecular Cancer, 17(1), 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, Y., & Ertl, H. C. (2016). Starved and asphyxiated: How can CD8+ T cells within a tumor microenvironment prevent tumor progression. Frontiers in Immunology, 7, 32. https://doi.org/10.3389/fimmu.2016.00032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maybin, J. A., Murray, A. A., Saunders, P. T., Hirani, N., Carmeliet, P., & Critchley, H. O. (2018). Hypoxia and hypoxia inducible factor-1α are required for normal endometrial repair during menstruation. Nature Communications, 9(1), 295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Juillerat, A., Marechal, A., Filhol, J. M., Valogne, Y., Valton, J., Duclert, A., Duchateau, P., & Poirot, L. (2017). An oxygen sensitive self-decision making engineered CAR T-cell. Scientific Reports, 7, 39833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jadidi-Niaragh, F., Atyabi, F., Rastegari, A., Kheshtchin, N., Arab, S., Hassannia, H., Ajami, M., Mirsanei, Z., Habibi, S., Masoumi, F., Noorbakhsh, F., Shokri, F., & Hadjati, J. (2017). CD73 specific siRNA loaded chitosan lactate nanoparticles potentiate the antitumor effect of a dendritic cell vaccine in 4T1 breast cancer bearing mice. Journal of Controlled Release, 246, 46–59.

    Article  CAS  PubMed  Google Scholar 

  58. Junghans, R. P. (2017). The challenges of solid tumor for designer CAR-T therapies: A 25-years perspective. Nature Publishing Group. https://doi.org/10.1038/cgt.2016.82.

  59. Solinas, G., Schiarea, S., Liguori, M., Fabbri, M., Pesce, S., Zammataro, L., Pasqualini, F., Nebuloni, M., Chiabrando, C., Mantovani, A., & Allavena, P. (2010). Tumor-conditioned macrophages secrete migration-stimulating factor: A new marker for M2-polarization, influencing tumor cell motility. The Journal of Immunology., 185(1), 642–652.

    Article  CAS  PubMed  Google Scholar 

  60. Condeelis, J., & Pollard, J. W. (2006). Macrophages: Obligate partners for tumor cell migration, invasion, and metastasis. Cell., 124(2), 263–266.

    Article  CAS  PubMed  Google Scholar 

  61. Sharma, P., & Allison, J. P. (2015). Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell., 161(2), 205–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jin, C., Yu, D., & Essand, M. (2016). Prospects to improve chimeric antigen receptor T-cell therapy for solid tumors. Future Medicine, 8, 1355–1361. https://doi.org/10.2217/imt-2016-0125.

    Article  CAS  Google Scholar 

  63. Kumar, V., Patel, S., Tcyganov, E., & Gabrilovich, D. I. (2016). The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends in Immunology, 37(3), 208–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chinen, T., Kannan, A. K., Levine, A. G., Fan, X., Klein, U., Zheng, Y., Gasteiger, G., Feng, Y., Fontenot, J. D., & Rudensky, A. Y. (2016). An essential role for the IL-2 receptor in T reg cell function. Nature Immunology, 17(11), 1322–1333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Janco, J. M. T., Lamichhane, P., Karyampudi, L., & Knutson, K. L. (2015). Tumor-infiltrating dendritic cells in cancer pathogenesis. The Journal of Immunology., 194(7), 2985–2991.

    Article  CAS  Google Scholar 

  66. Hurt, B., Schulick, R., Edil, B., El Kasmi, K. C., & Barnett, C. (2017). Cancer-promoting mechanisms of tumor-associated neutrophils. The American Journal of Surgery., 214(5), 938–944.

    Article  PubMed  Google Scholar 

  67. van den Broek, T., Borghans, J. A., & van Wijk, F. (2018). The full spectrum of human naive T cells. Nature Reviews. Immunology, 18, 1–373. https://doi.org/10.1038/s41577-018-0001-y.

    Article  CAS  Google Scholar 

  68. Topalian, S. L., Drake, C. G., & Pardoll, D. M. (2015). Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell, 27(4), 450–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Postow, M. A., Callahan, M. K., & Wolchok, J. D. (2015). Immune checkpoint blockade in cancer therapy. Journal of Clinical Oncology, 33(17), 1974–1982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rotte, A., Jin, J., & Lemaire, V. (2017). Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy. Annals of Oncology, 29(1), 71–83.

    Article  Google Scholar 

  71. Linsley, P. S., Greene, J. L., Brady, W., Bajorath, J., Ledbetter, J. A., & Peach, R. (1994). Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity., 1(9), 793–801.

    Article  CAS  PubMed  Google Scholar 

  72. Parry, R. V., Chemnitz, J. M., Frauwirth, K. A., Lanfranco, A. R., Braunstein, I., Kobayashi, S. V., Linsley, P. S., Thompson, C. B., & Riley, J. L. (2005). CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Molecular and Cellular Biology, 25(21), 9543–9553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wing, K., Onishi, Y., Prieto-Martin, P., Yamaguchi, T., Miyara, M., Fehervari, Z., Nomura, T., & Sakaguchi, S. (2008). CTLA-4 control over Foxp3+ regulatory T cell function. Science., 322(5899), 271–275.

    Article  CAS  PubMed  Google Scholar 

  74. Ishida, Y., Agata, Y., Shibahara, K., & Honjo, T. (1992). Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. The EMBO Journal., 11(11), 3887–3895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Francisco, L. M., Salinas, V. H., Brown, K. E., Vanguri, V. K., Freeman, G. J., Kuchroo, V. K., & Sharpe, A. H. (2009). PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. The Journal of Experimental Medicine, 206(13), 3015–3029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fife, B. T., Pauken, K. E., Eagar, T. N., Obu, T., Wu, J., Tang, Q., Azuma, M., Krummel, M. F., & Bluestone, J. A. (2009). Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR–induced stop signal. Nature Immunology, 10(11), 1185–1192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, X., Teng, F., Kong, L., & Yu, J. (2016). PD-L1 expression in human cancers and its association with clinical outcomes. OncoTargets and Therapy., 9, 5023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen, N., Morello, A., Tano, Z., & Adusumilli, P. S. (2017). CAR T-cell intrinsic PD-1 checkpoint blockade: A two-in-one approach for solid tumor immunotherapy. Oncoimmunology., 6(2), e1273302.

    Article  CAS  PubMed  Google Scholar 

  79. Triebel, F., Jitsukawa, S., Baixeras, E., Roman-Roman, S., Genevee, C., Viegas-Pequignot, E., & Hercend, T. (1990). LAG-3, a novel lymphocyte activation gene closely related to CD4. The Journal of Experimental Medicine, 171(5), 1393–1405.

    Article  CAS  PubMed  Google Scholar 

  80. Huard, B., Prigent, P., Tournier, M., Bruniquel, D., & Triebel, F. (1995). CD4/major histocompatibility complex class II interaction analyzed with CD4-and lymphocyte activation gene-3 (LAG-3)-Ig fusion proteins. European Journal of Immunology, 25(9), 2718–2721.

    Article  CAS  PubMed  Google Scholar 

  81. Xu, F., Liu, J., Liu, D., Liu, B., Wang, M., Hu, Z., du, X., Tang, L., & He, F. (2014). LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Research, 74(13), 3418–3428.

    Article  CAS  PubMed  Google Scholar 

  82. Blackburn, S. D., Shin, H., Haining, W. N., Zou, T., Workman, C. J., Polley, A., Betts, M. R., Freeman, G. J., Vignali, D. A. A., & Wherry, E. J. (2009). Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nature Immunology, 10(1), 29–37.

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, Y., Zhang, X., Cheng, C., Mu, W., Liu, X., Li, N., Wei, X., Liu, X., Xia, C., & Wang, H. (2017). CRISPR-Cas9 mediated LAG-3 disruption in CAR-T cells. Frontiers of Medicine., 11(4), 554–562.

    Article  PubMed  Google Scholar 

  84. Prigent, P., El mir, S., Dreano, M., & Triebel, F. (1999). Lymphocyte activation gene-3 induces tumor regression and antitumor immune responses. European Journal of Immunology, 29(12), 3867–3876.

    Article  CAS  PubMed  Google Scholar 

  85. Monney, L., Sabatos, C. A., Gaglia, J. L., Ryu, A., Waldner, H., Chernova, T., Manning, S., Greenfield, E. A., Coyle, A. J., Sobel, R. A., Freeman, G. J., & Kuchroo, V. K. (2002). Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature., 415(6871), 536–541.

    Article  CAS  PubMed  Google Scholar 

  86. Dardalhon, V., Anderson, A. C., Karman, J., Apetoh, L., Chandwaskar, R., Lee, D. H., Cornejo, M., Nishi, N., Yamauchi, A., Quintana, F. J., Sobel, R. A., Hirashima, M., & Kuchroo, V. K. (2010). Tim-3/galectin-9 pathway: Regulation of Th1 immunity through promotion of CD11b+ Ly-6G+ myeloid cells. The Journal of Immunology., 185(3), 1383–1392.

    Article  CAS  PubMed  Google Scholar 

  87. Baitsch, L., Legat, A., Barba, L., Marraco, S. A. F., Rivals, J.-P., Baumgaertner, P., et al. (2012). Extended co-expression of inhibitory receptors by human CD8 T-cells depending on differentiation, antigen-specificity and anatomical localization. PLoS One, 7(2), e30852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pasero, C., Speiser, D. E., Derre, L., & Olive, D. (2012). The HVEM network: New directions in targeting novel costimulatory/co-inhibitory molecules for cancer therapy. Current Opinion in Pharmacology, 12(4), 478–485.

    Article  CAS  PubMed  Google Scholar 

  89. Derré, L., Rivals, J.-P., Jandus, C., Pastor, S., Rimoldi, D., Romero, P., Michielin, O., Olive, D., & Speiser, D. E. (2010). BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination. The Journal of Clinical Investigation., 120(1), 157–167.

    Article  CAS  PubMed  Google Scholar 

  90. Stanietsky, N., Simic, H., Arapovic, J., Toporik, A., Levy, O., Novik, A., Levine, Z., Beiman, M., Dassa, L., Achdout, H., Stern-Ginossar, N., Tsukerman, P., Jonjic, S., & Mandelboim, O. (2009). The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proceedings of the National Academy of Sciences, 106(42), 17858–17863.

    Article  Google Scholar 

  91. Yu, X., Harden, K., Gonzalez, L. C., Francesco, M., Chiang, E., Irving, B., et al. (2009). The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nature Immunology, 10(1), 48–57.

    Article  CAS  PubMed  Google Scholar 

  92. Joller, N., Lozano, E., Burkett, P. R., Patel, B., Xiao, S., Zhu, C., Xia, J., Tan, T. G., Sefik, E., Yajnik, V., Sharpe, A. H., Quintana, F. J., Mathis, D., Benoist, C., Hafler, D. A., & Kuchroo, V. K. (2014). Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity., 40(4), 569–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Levine, D. A., & Network, C. G. A. R. (2013). Integrated genomic characterization of endometrial carcinoma. Nature., 497(7447), 67–73.

    Article  CAS  PubMed  Google Scholar 

  94. Network, C. G. A. R. (2012). Comprehensive genomic characterization of squamous cell lung cancers. Nature., 489(7417), 519.

    Article  CAS  Google Scholar 

  95. Network, C. G. A. (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature., 487(7407), 330–337.

    Article  CAS  Google Scholar 

  96. Network, C. G. A. (2012). Comprehensive molecular portraits of human breast tumours. Nature., 490(7418), 61–70.

    Article  CAS  Google Scholar 

  97. Network, C. G. A. R. (2013). Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature., 499(7456), 43.

    Article  CAS  Google Scholar 

  98. Casado, J. G., Pawelec, G., Morgado, S., Sanchez-Correa, B., Delgado, E., Gayoso, I., Duran, E., Solana, R., & Tarazona, R. (2009). Expression of adhesion molecules and ligands for activating and costimulatory receptors involved in cell-mediated cytotoxicity in a large panel of human melanoma cell lines. Cancer Immunology, Immunotherapy, 58(9), 1517–1526.

    Article  CAS  PubMed  Google Scholar 

  99. Ohta, A., Gorelik, E., Prasad, S. J., Ronchese, F., Lukashev, D., Wong, M. K., et al. (2006). A2A adenosine receptor protects tumors from antitumor T cells. Proceedings of the National Academy of Sciences, 103(35), 13132–13137.

    Article  CAS  Google Scholar 

  100. Ohta, A. (2016). A metabolic immune checkpoint: Adenosine in tumor microenvironment. Frontiers in Immunology, 7, 109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kmiecik, J., Poli, A., Brons, N. H., Waha, A., Eide, G. E., Enger, P. Ø., et al. (2013). Elevated CD3+ and CD8+ tumor-infiltrating immune cells correlate with prolonged survival in glioblastoma patients despite integrated immunosuppressive mechanisms in the tumor microenvironment and at the systemic level. Journal of Neuroimmunology, 264(1), 71–83.

    Article  CAS  PubMed  Google Scholar 

  102. Peng, W., Ye, Y., Rabinovich, B. A., Liu, C., Lou, Y., Zhang, M., et al. (2010). Transduction of tumor-specific T cells with CXCR2 chemokine receptor improves migration to tumor and antitumor immune responses. Clinical Cancer Research 1078–0432. CCR-10-712.

  103. Spear, P., Barber, A., & Sentman, C. L. (2013). Collaboration of chimeric antigen receptor (CAR)-expressing T cells and host T cells for optimal elimination of established ovarian tumors. Oncoimmunology., 2(4), e23564.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Chinnasamy, D., Yu, Z., Theoret, M. R., Zhao, Y., Shrimali, R. K., Morgan, R. A., Feldman, S. A., Restifo, N. P., & Rosenberg, S. A. (2010). Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. The Journal of Clinical Investigation., 120(11), 3953–3968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Adusumilli, P. S., Cherkassky, L., Villena-Vargas, J., Colovos, C., Servais, E., Plotkin, J., Jones, D. R., & Sadelain, M. (2014). Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Science Translational Medicine, 6(261), 261ra151–261ra151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Watford, W. T., Moriguchi, M., Morinobu, A., & O’Shea, J. J. (2003). The biology of IL-12: Coordinating innate and adaptive immune responses. Cytokine & Growth Factor Reviews, 14(5), 361–368.

    Article  CAS  Google Scholar 

  107. Kreso, A., & Dick, J. E. (2014). Evolution of the cancer stem cell model. Cell Stem Cell, 14(3), 275–291.

    Article  CAS  PubMed  Google Scholar 

  108. Petrov, J. C., Wada, M., Pinz, K. G., Yan, L. E., Chen, K. H., Shuai, X., Liu, H., Chen, X., Leung, L. H., Salman, H., Hagag, N., Liu, F., Jiang, X., & Ma, Y. (2018). Compound CAR T-cells as a double-pronged approach for treating acute myeloid leukemia. Leukemia., 32, 1–1326. https://doi.org/10.1038/s41375-018-0075-3.

    Article  Google Scholar 

  109. Kershaw, M. H., Westwood, J. A., Parker, L. L., Wang, G., Eshhar, Z., Mavroukakis, S. A., White, D. E., Wunderlich, J. R., Canevari, S., Rogers-Freezer, L., Chen, C. C., Yang, J. C., Rosenberg, S. A., & Hwu, P. (2006). A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clinical Cancer Research, 12(20), 6106–6115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Park, J. R., DiGiusto, D. L., Slovak, M., Wright, C., Naranjo, A., Wagner, J., et al. (2007). Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Molecular Therapy, 15(4), 825–833.

    Article  CAS  PubMed  Google Scholar 

  111. Morgan, R. A., Yang, J. C., Kitano, M., Dudley, M. E., Laurencot, C. M., & Rosenberg, S. A. (2010). Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Molecular Therapy, 18(4), 843–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Maus, M. V., Haas, A. R., Beatty, G. L., Albelda, S. M., Levine, B. L., Liu, X., Zhao, Y., Kalos, M., & June, C. H. (2013). T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunology Research, 1(1), 26–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ahmed, N., Brawley, V. S., Hegde, M., Robertson, C., Ghazi, A., Gerken, C., Liu, E., Dakhova, O., Ashoori, A., Corder, A., Gray, T., Wu, M. F., Liu, H., Hicks, J., Rainusso, N., Dotti, G., Mei, Z., Grilley, B., Gee, A., Rooney, C. M., Brenner, M. K., Heslop, H. E., Wels, W. S., Wang, L. L., Anderson, P., & Gottschalk, S. (2015). Human epidermal growth factor receptor 2 (HER2)–specific chimeric antigen receptor–modified T cells for the immunotherapy of HER2-positive sarcoma. Journal of Clinical Oncology, 33(15), 1688–1696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lamers, C. H., Klaver, Y., Gratama, J. W., Sleijfer, S., & Debets, R. (2016). Treatment of metastatic renal cell carcinoma (mRCC) with CAIX CAR-engineered T-cells–a completed study overview. Biochemical Society Transactions, 44(3), 951–959.

    Article  CAS  PubMed  Google Scholar 

  115. Hege, K. M., Bergsland, E. K., Fisher, G. A., Nemunaitis, J. J., Warren, R. S., McArthur, J. G., et al. (2017). Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer. Journal for Immunotherapy of Cancer., 5(1), 22.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ahmed, N., Brawley, V., Hegde, M., Bielamowicz, K., Kalra, M., Landi, D., Robertson, C., Gray, T. L., Diouf, O., Wakefield, A., Ghazi, A., Gerken, C., Yi, Z., Ashoori, A., Wu, M. F., Liu, H., Rooney, C., Dotti, G., Gee, A., Su, J., Kew, Y., Baskin, D., Zhang, Y. J., New, P., Grilley, B., Stojakovic, M., Hicks, J., Powell, S. Z., Brenner, M. K., Heslop, H. E., Grossman, R., Wels, W. S., & Gottschalk, S. (2017). HER2-specific chimeric antigen receptor–modified virus-specific T cells for progressive glioblastoma: A phase 1 dose-escalation trial. JAMA Oncology, 3(8), 1094–1101.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Feng, K., Liu, Y., Guo, Y., Qiu, J., Wu, Z., Dai, H., et al. (2018). Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers. Protein & Cell, 2017, 1–10. https://doi.org/10.1007/s13238-017-0440-4.

    Article  CAS  Google Scholar 

  118. Zhang, H., Ye, Z.-l., Z-g, Y., Z-q, L., & H-j, J. (2016). New strategies for the treatment of solid tumors with CAR-T cells. International Journal of Biological Sciences, 12(6), 718–729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Newick, K., O'Brien, S., Moon, E., & Albelda, S. M. (2017). CAR T cell therapy for solid tumors. Annual Review of Medicine, 68, 139–152.

    Article  CAS  PubMed  Google Scholar 

  120. Brown, C. E., Badie, B., Barish, M. E., Weng, L., Ostberg, J. R., Chang, W.-C., Naranjo, A., Starr, R., Wagner, J., Wright, C., Zhai, Y., Bading, J. R., Ressler, J. A., Portnow, J., D'Apuzzo, M., Forman, S. J., & Jensen, M. C. (2015). Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clinical Cancer Research, 21(18), 4062–4072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Charlesworth, C. T., Deshpande, P. S., Dever, D. P., Dejene, B., Gomez-Ospina, N., Mantri, S., et al. (2018). Identification of pre-existing adaptive immunity to Cas9 proteins in humans. Biorxiv., 243345.

  122. Wu, C.-Y., Roybal, K. T., Puchner, E. M., Onuffer, J., & Lim, W. A. (2015). Remote control of therapeutic T cells through a small molecule–gated chimeric receptor. Science., 350(6258), aab4077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tamada, K., Geng, D., Sakoda, Y., Bansal, N., Srivastava, R., & Li, Z. (2013). Redirecting gene-modified T cells toward various Cancer types using tagged antibodies (vol 18, pg 6436, 2012). Clinical Cancer Research, 19(4), 951.

    Article  Google Scholar 

  124. Urbanska, K., Lanitis, E., Poussin, M., Lynn, R. C., Gavin, B. P., Kelderman, S. et al. (2012). A universal strategy for adoptive immunotherapy of cancer through use of a novel T cell antigen receptor. Cancer Research. 3890.2011. https://doi.org/10.1158/0008-5472.

  125. Liu, L., Sun, M., & Wang, Z. (2012). Adoptive T-cell therapy of B-cell malignancies: Conventional and physiological chimeric antigen receptors. Cancer Letters, 316(1), 1–5.

    Article  CAS  PubMed  Google Scholar 

  126. Kahlon, K. S., Brown, C., Cooper, L. J., Raubitschek, A., Forman, S. J., & Jensen, M. C. (2004). Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Research, 64(24), 9160–9166.

    Article  CAS  PubMed  Google Scholar 

  127. Shaffer, D. R., Savoldo, B., Yi, Z., Chow, K. K., Kakarla, S., Spencer, D., et al. (2011:blood-2010-04-278218). T cells redirected against CD70 for the immunotherapy of CD70-positive malignancies. Blood., 117, 4304–4314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Niederman, T. M., Ghogawala, Z., Carter, B. S., Tompkins, H. S., Russell, M. M., & Mulligan, R. C. (2002). Antitumor activity of cytotoxic T lymphocytes engineered to target vascular endothelial growth factor receptors. Proceedings of the National Academy of Sciences, 99(10), 7009–7014.

    Article  CAS  Google Scholar 

  129. Muniappan, A., Banapour, B., Lebkowski, J., & Talib, S. (2000). Ligand-mediated cytolysis of tumor cells: Use of heregulin-ζ chimeras to redirect cytotoxic T lymphocytes. Cancer Gene Therapy, 7(1), 128–134.

    Article  CAS  PubMed  Google Scholar 

  130. Zhang, T., Barber, A., & Sentman, C. L. (2006). Generation of antitumor responses by genetic modification of primary human T cells with a chimeric NKG2D receptor. Cancer Research, 66(11), 5927–5933.

    Article  CAS  PubMed  Google Scholar 

  131. Zhang, T., Wu, M.-R., & Sentman, C. L. (2012). An NKp30-based chimeric antigen receptor promotes T cell effector functions and antitumor efficacy in vivo. The Journal of Immunology., 1103495.

  132. Cho, J. H., Collins, J. J., & Wong, W. W. (2018). Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell., 173, 1426–1438.e11. https://doi.org/10.1016/j.cell.2018.03.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhao, J., Lin, Q., Song, Y., & Liu, D. (2018). Universal CARs, universal T cells, and universal CAR T cells. Journal of Hematology & Oncology, 11(1), 132.

    Article  CAS  Google Scholar 

  134. Grada, Z., Hegde, M., Byrd, T., Shaffer, D. R., Ghazi, A., Brawley, V. S., Corder, A., Schönfeld, K., Koch, J., Dotti, G., Heslop, H. E., Gottschalk, S., Wels, W. S., Baker, M. L., & Ahmed, N. (2013). TanCAR: A novel bispecific chimeric antigen receptor for cancer immunotherapy. Molecular Therapy--Nucleic Acids, 2, e105. https://doi.org/10.1038/mtna.2013.32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hegde, M., Grada, Z., Pignata, A., Wakefield, A., Fousek, K., Bielamowicz, K., Chow, K., Brawley, V., Byrd, T., Gottschalk, S., Mukherjee, M., Wels, W. S., Baker, M., Dotti, G., Orange, J., & Ahmed, N. (2015). A bispecific chimeric antigen receptor molecule enhances T cell activation through dual immunological synapse formation and offsets antigen escape in glioblastoma. Journal for Immunotherapy of Cancer., 3(S2), O3.

    Article  PubMed Central  Google Scholar 

  136. Lanitis, E., Poussin, M., Klattenhoff, A. W., Song, D., Sandaltzopoulos, R., June, C. H., & Powell, D. J. (2013). Chimeric antigen receptor T cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo. Cancer Immunology Research, 1, 43–53. https://doi.org/10.1158/2326-6066.CIR-13-0008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wilkie, S., van Schalkwyk, M. C., Hobbs, S., Davies, D. M., van der Stegen, S. J., Pereira, A. C. P., et al. (2012). Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. Journal of Clinical Immunology, 32(5), 1059–1070.

    Article  CAS  PubMed  Google Scholar 

  138. Trapani, J. A., Sutton, V. R., Thia, K. Y., Li, Y. Q., Froelich, C. J., Jans, D. A., et al. (2003). A clathrin/dynamin-and mannose-6-phosphate receptor–independent pathway for granzyme B–induced cell death. The Journal of Cell Biology., 160(2), 223–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Senovilla, L., Vitale, I., Martins, I., Tailler, M., Pailleret, C., Michaud, M., Galluzzi, L., Adjemian, S., Kepp, O., Niso-Santano, M., Shen, S., Marino, G., Criollo, A., Boileve, A., Job, B., Ladoire, S., Ghiringhelli, F., Sistigu, A., Yamazaki, T., Rello-Varona, S., Locher, C., Poirier-Colame, V., Talbot, M., Valent, A., Berardinelli, F., Antoccia, A., Ciccosanti, F., Fimia, G. M., Piacentini, M., Fueyo, A., Messina, N. L., Li, M., Chan, C. J., Sigl, V., Pourcher, G., Ruckenstuhl, C., Carmona-Gutierrez, D., Lazar, V., Penninger, J. M., Madeo, F., Lopez-Otin, C., Smyth, M. J., Zitvogel, L., Castedo, M., & Kroemer, G. (2012). An immunosurveillance mechanism controls cancer cell ploidy. Science., 337(6102), 1678–1684.

    Article  CAS  PubMed  Google Scholar 

  140. Martins, I., Tesniere, A., Kepp, O., Michaud, M., Schlemmer, F., Senovilla, L., Séror, C., Métivier, D., Perfettini, J. L., Zitvogel, L., & Kroemer, G. (2009). Chemotherapy induces ATP release from tumor cells. Cell Cycle, 8(22), 3723–3728.

    Article  CAS  PubMed  Google Scholar 

  141. Heylmann, D., Bauer, M., Becker, H., Van Gool, S., Bacher, N., Steinbrink, K., et al. (2013). Human CD4+ CD25+ regulatory T cells are sensitive to low dose cyclophosphamide: Implications for the immune response. PLoS One, 8(12), e83384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Matsumura, S., Wang, B., Kawashima, N., Braunstein, S., Badura, M., Cameron TO, et al. (2008). Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. The Journal of Immunology., 181(5), 3099–3107.

    Article  CAS  PubMed  Google Scholar 

  143. Ganss, R., Ryschich, E., Klar, E., Arnold, B., & Hämmerling, G. J. (2002). Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication. Cancer Research, 62(5), 1462–1470.

    CAS  PubMed  Google Scholar 

  144. Apetoh, L., Ghiringhelli, F., Tesniere, A., Obeid, M., Ortiz, C., Criollo, A., Mignot, G., Maiuri, M. C., Ullrich, E., Saulnier, P., Yang, H., Amigorena, S., Ryffel, B., Barrat, F. J., Saftig, P., Levi, F., Lidereau, R., Nogues, C., Mira, J. P., Chompret, A., Joulin, V., Clavel-Chapelon, F., Bourhis, J., André, F., Delaloge, S., Tursz, T., Kroemer, G., & Zitvogel, L. (2007). Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Medicine, 13(9), 1050–1059.

    Article  CAS  PubMed  Google Scholar 

  145. Aranda, F., Buqué, A., Bloy, N., Castoldi, F., Eggermont, A., Cremer, I., Fridman, W. H., Fucikova, J., Galon, J., Spisek, R., Tartour, E., Zitvogel, L., Kroemer, G., & Galluzzi, L. (2015). Trial watch: Adoptive cell transfer for oncological indications. Oncoimmunology., 4(11), e1046673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Vanneman, M., & Dranoff, G. (2012). Combining immunotherapy and targeted therapies in cancer treatment. Nature Reviews. Cancer, 12(4), 237–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ozao-Choy, J., Ma, G., Kao, J., Wang, G. X., Meseck, M., Sung, M., Schwartz, M., Divino, C. M., Pan, P. Y., & Chen, S. H. (2009). The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Research, 69, 2514–2522. https://doi.org/10.1158/0008-5472.CAN-08-4709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Nishio, N., Diaconu, I., Liu, H., Cerullo, V., Caruana, I., Hoyos, V., Bouchier-Hayes, L., Savoldo, B., & Dotti, G. (2014). Armed oncolytic virus enhances immune functions of chimeric antigen receptor–modified T cells in solid tumors. Cancer Research, 74, 5195–5205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Di Stasi, A., De Angelis, B., Rooney, C. M., Zhang, L., Mahendravada, A., Foster, A. E., et al. (2009). T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood., 113(25), 6392–6402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Brown, C. E., Alizadeh, D., Starr, R., Weng, L., Wagner, J. R., Naranjo, A., Ostberg, J. R., Blanchard, M. S., Kilpatrick, J., Simpson, J., Kurien, A., Priceman, S. J., Wang, X., Harshbarger, T. L., D’Apuzzo, M., Ressler, J. A., Jensen, M. C., Barish, M. E., Chen, M., Portnow, J., Forman, S. J., & Badie, B. (2016). Regression of glioblastoma after chimeric antigen receptor T-cell therapy. The New England Journal of Medicine, 375(26), 2561–2569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

ST and RE contributed to data gathering, writing the primary draft of the manuscript, and designing figures and Tables. AE contributed to the hypothesis, corresponding, scientific and structural editing, and verifying the manuscript before submission.

Corresponding author

Correspondence to Abdolreza Esmaeilzadeh.

Ethics declarations

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahmasebi, S., Elahi, R. & Esmaeilzadeh, A. Solid Tumors Challenges and New Insights of CAR T Cell Engineering. Stem Cell Rev and Rep 15, 619–636 (2019). https://doi.org/10.1007/s12015-019-09901-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-019-09901-7

Keywords

Navigation