Skip to main content

Advertisement

Log in

Progress in nutritional immunology

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Optimum but balanced food intake maintains healthy growth and disease-free lifespan. However, imbalanced and over-nutrition promotes obesity, diabetes, malignancy, osteoporosis, infectious diseases, etc. In 1936, McCay reported that calorie restriction prevents weight gain and extend lifespan in rodents. In early 1970, Dr. Good at University of Minnesota and Dr. Walford at UCLA began studies in mice by reducing protein and calorie intake and studying their impact on immune function. Dr. Good’s group (Jose, Fernandes, Kramer, Cooper, Day, etc.) reported changes in humoral and cellular immunity at present known as innate and adaptive immune function. Later, much interest was devoted by late Dr. Good on studying the role of calorie restriction (CR) and the role of zinc on immunity, particularly their role on aging, autoimmunity, and malignancy. Both functional role of T-cells, NK-cells and B-cells and their interaction during CR was studied extensively. We recently decided to pursue the beneficial effects of n-3 fatty acids (fish oil) with and without CR on controlling autoimmune-disease in NZB × NZW F1 mice. Our results indicated that n-3 FA when fed ad-libitum prolongs lifespan higher than commonly consumed n-6 FA (corn oil) in these mice. Moreover, n-3 FA + CR is found to be more effective than n-6 FA + CR. Some of the beneficial changes by n-3 FA include enhancing antioxidant enzymes and lowering Th-1/Th-2 cytokines, adhesion molecules, COX-2/PGE2 levels, pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α etc. The decreased pro-inflammatory cytokines were also found to protect against bone loss in OVX mice. Further, Fat-1 transgenic mice (which make n-3 FA endogenously in vivo from n-6 FA) when fed CR revealed decreased NF-κB and AP-1 activity and increased expression of life-prolonging gene SIRT1. Also CR and n-3 FA decreases body weight and increases insulin sensitivity, as well. Thus, to prevent obesity decreased calorie intake with n-3 FA supplement is far more effective and may have protection against CVD, malignancy, autoimmunity, and osteoporosis. The CR studies undertaken in primates and recently in humans are showing very encouraging results. Inorder to understand more precisely the role of diet and nutrition, new approaches exploring the link through nutrigenomics, proteomics and metabolomics may soon provide insight into controlling age-related diseases by following a balanced food intake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Good RA, Fernandes G, Yunis EJ, Cooper WC, Jose DC, Kramer TR, Hansen MA. Nutritional deficiency, immunologic function, and disease. Am J Pathol 1976;84(3):599–614.

    PubMed  CAS  Google Scholar 

  2. Fernandes G. Value of Penicillin mycelium residue and liver-meal residue as a supplement to chick diets. Indian J Vet Sci 1960;30:99–106.

    Google Scholar 

  3. Fernandes G, Ranadive KJ. 1962 The value of pharmaceutical waste as a supplement to poultry ration. Proc 12th World Poultry Congress, Sydney Australia:264–71.

  4. Fernandes G, Sandbhor JK. Value of germinated pulses as a supplement to diet of breeding rats. LAIS Bull 1964;11:34–7.

    Google Scholar 

  5. Fernandes G. Some aspects of care and management of inbred strains of mice Indian. J Med Sci 1968;22(5):315–28.

    CAS  Google Scholar 

  6. Fernandes G, Yunis EJ, Jose DG, Good RA. Dietary influence on antinuclear antibodies and cell-mediated immunity in NZB mice. Int Arch Allergy Appl immunol 1973;44(6):770–82.

    PubMed  CAS  Google Scholar 

  7. Fernandes G, Yunis EJ, Smith J, Good RA. Dietary influence on breeding behavior, hemolytic anemia, and longevity in NZB mice. Proc Soc Exp Biol Med 1972;139(4):1189–96.

    PubMed  CAS  Google Scholar 

  8. Jose DG, Good RA. Absence of enhancing antibody in cell mediated immunity to tumour heterografts in protein deficient rats. Nature 1971;231(5301):323–5.

    PubMed  CAS  Google Scholar 

  9. Jose DG, Cooper WC, Good RA. How protein deficiency enhances cellular immunity. Jama 1971;218(9):1428–9.

    PubMed  CAS  Google Scholar 

  10. Jose DG, Good RA. Immune resistance and malnutrition. Lancet 1972;1(7745):314.

    PubMed  CAS  Google Scholar 

  11. Jose DG, Good RA. Quantitative effects of nutritional essential amino acid deficiency upon immune responses to tumors in mice. J Exp Med 1973;137(1):1–9.

    PubMed  CAS  Google Scholar 

  12. Jose DG, Good RA. Quantitative effects of nutritional protein and calorie deficiency upon immune responses to tumors in mice. Cancer Res 1973;33(4):807–12.

    PubMed  CAS  Google Scholar 

  13. Fernandes G, Yunis EJ, Good RA. Influence of diet on survival of mice. Proc Natl Acad Sci USA 1976;73(4):1279–83.

    PubMed  CAS  Google Scholar 

  14. Fernandes G, Yunis EJ, Good RA. Suppression of adenocarcinoma by the immunological consequences of calorie restriction. Nature 1976;263(5577):504–7.

    PubMed  CAS  Google Scholar 

  15. Friend PS, Fernandes G, Good RA, Michael AF, Yunis EJ. Dietary restrictions early and late: effects on the nephropathy of the NZB × NZW mouse. Lab Invest 1978;38(6):629–32.

    PubMed  CAS  Google Scholar 

  16. Fernandes G, Friend P, Yunis EJ, Good RA. Influence of dietary restriction on immunologic function and renal disease in (NZB × NZW) F1 mice. Proc Natl Acad Sci USA 1978;75(3):1500–4.

    PubMed  CAS  Google Scholar 

  17. Fernandes G, Yunis EJ, Miranda M, Smith J, Good RA. Nutritional inhibition of genetically determined renal disease and autoimmunity with prolongation of life in kdkd mice. Proc Natl Acad Sci USA 1978;75(6):2888–92.

    PubMed  CAS  Google Scholar 

  18. Day NK, Fernandes G, Witkin SS, Thomas ES, Sarkar NH, Good RA. The effect of diet on autogenous immunity to mouse mammary tumor virus in C3H/Bi mice. Int J Cancer 1980;26(6):813–8.

    PubMed  CAS  Google Scholar 

  19. Izui S, Fernandes G, Hara I, McConahey PJ, Jensen FC, Dixon FJ, Good RA. Low-calorie diet selectively reduces expression of retroviral envelope glycoprotein gp70 in sera of NZB × NZW F1 hybrid mice. J Exp Med 1981;154(4):1116–24.

    PubMed  CAS  Google Scholar 

  20. Jung LK, Palladino MA, Calvano S, Mark DA, Good RA, Fernandes G. Effect of calorie restriction on the production and responsiveness to interleukin 2 in (NZB × NZW)F1 mice. Clin Immunol Immunopathol 1982;25(2):295–301.

    PubMed  CAS  Google Scholar 

  21. Fernandes G, Alonso DR, Tanaka T, Thaler HT, Yunis EJ, Good RA. Influence of diet on vascular lesions in autoimmune-prone B/W mice. Proc Natl Acad Sci USA 1983;80(3):874–7.

    PubMed  CAS  Google Scholar 

  22. Good RA, West A, Day NK, Dong ZW, Fernandes G. Effects of undernutrition of host cell and organ function. Cancer Res 1982;42(2 Suppl):737s–46s.

    PubMed  CAS  Google Scholar 

  23. Hansen MA, Fernandes G, Good RA. Nutrition and immunity: the influence of diet on autoimmunity and the role of zinc in the immune response. Annu Rev Nutr 1982;2:151–77.

    PubMed  CAS  Google Scholar 

  24. Fernandes G, Good RA. Inhibition by restricted-calorie diet of lymphoproliferative disease and renal damage in MRL/lpr mice. Proc Natl Acad Sci USA 1984;81(19):6144–8.

    PubMed  CAS  Google Scholar 

  25. Fernandes G, Chandrasekar B, Troyer DA, Venkatraman JT, Good RA. Dietary lipids and calorie restriction affect mammary tumor incidence and gene expression in mouse mammary tumor virus/v-Ha-ras transgenic mice. Proc Natl Acad Sci USA 1995;92(14):6494–8.

    PubMed  CAS  Google Scholar 

  26. Johnson BC, Gajjar A, Kubo C, Good RA. Calories versus protein in onset of renal disease in NZB × NZW mice. Proc Natl Acad Sci USA 1986;83(15):5659–62.

    PubMed  CAS  Google Scholar 

  27. Engelman RW, Day NK, Chen RF, Tomita Y, Bauer-Sardina I, Dao ML, Good RA. Calorie consumption level influences development of C3H/Ou breast adenocarcinoma with indifference to calorie source. Proc Soc Exp Biol Med 1990;193(1):23–30.

    PubMed  CAS  Google Scholar 

  28. Cherry NN, Engelman RW, Wang BY, Kinjoh K, El-Badri NS, Good RA. Calorie restriction delays the crescentic glomerulonephritis of SCG/Kj mice. Proc Soc Exp Biol Med 1998;218(3):218–22.

    PubMed  CAS  Google Scholar 

  29. Cuenca AG, Cress WD, Good RA, Marikar Y, Engelman RW. Calorie restriction influences cell cycle protein expression and DNA synthesis during liver regeneration. Exp Biol Med (Maywood) 2001;226(11):1061–7.

    CAS  Google Scholar 

  30. Patel NV, Gordon MN, Connor KE, Good RA, Engelman RW, Mason J, Morgan DG, Morgan TE, Finch CE. Caloric restriction attenuates Abeta-deposition in Alzheimer transgenic models. Neurobiol Aging 2005;26(7):995–1000.

    PubMed  CAS  Google Scholar 

  31. Johnson BC, Good RA. Chronic dietary restriction and longevity. Proc Soc Exp Biol Med 1990;193(1):4–5.

    PubMed  CAS  Google Scholar 

  32. Good RA, Lorenz E. Nutrition, immunity, aging, and cancer. Nutr Rev 1988;46(2):62–7.

    PubMed  CAS  Google Scholar 

  33. Shao RP, Dao ML, Day NK, Good RA. Dietary manipulation of mammary tumor development in adult C3H/Bi mice. Proc Soc Exp Biol Med 1990;193(4):313–7.

    PubMed  CAS  Google Scholar 

  34. Dao ML, Shao R, Risley J, Good RA. Influence of chronic energy intake restriction on intestinal alkaline phosphatase in C3H/Bi mice and autoimmune-prone MRL/lpr,lpr mice. J Nutr 1989;119(12):2017–22.

    PubMed  CAS  Google Scholar 

  35. McCay CM, Cromwell MF, Maynard LA. The effect of retarded growth upon the length of lifespan and ultimate body size. J Nutr 1935;10:63–79.

    CAS  Google Scholar 

  36. Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 2005;6(4):298–305.

    PubMed  CAS  Google Scholar 

  37. Sinclair DA. Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 2005;126(9):987–1002.

    PubMed  CAS  Google Scholar 

  38. Venkatraman J, Fernandes G. Modulation of age-related alterations in membrane composition and receptor-associated immune functions by food restriction in Fischer 344 rats. Mech Ageing Dev 1992;63(1):27–44.

    PubMed  CAS  Google Scholar 

  39. Fernandes G. Dietary lipids and risk of autoimmune disease. Clin Immunol Immunopathol 1994;72(2):193–7.

    PubMed  CAS  Google Scholar 

  40. Fernandes G, Venkatraman JT, Turturro A, Attwood VG, Hart RW. Effect of food restriction on life span and immune functions in long-lived Fischer-344 × Brown Norway F1 rats. J Clin Immunol 1997;17(1):85–95.

    PubMed  CAS  Google Scholar 

  41. Weindruch RH, Kristie JA, Naeim F, Mullen BG, Walford RL. Influence of weaning-initiated dietary restriction on responses to T cell mitogens and on splenic T cell levels in a long-lived F1-hybrid mouse strain. Exp Gerontol 1982;17(1):49–64.

    PubMed  CAS  Google Scholar 

  42. Walford RL, Liu RK, Gerbase-Delima M, Mathies M, Smith GS. Longterm dietary restriction and immune function in mice: response to sheep red blood cells and to mitogenic agents. Mech Ageing Dev 1973;2(6):447–54.

    PubMed  CAS  Google Scholar 

  43. Walford R. The immunologic theory of aging. Copenhagen: Munkegaard; 1967.

  44. Iwai H, Fernandes G. Immunological functions in food-restricted rats: enhanced expression of high-affinity interleukin-2 receptors on splenic T cells. Immunol Lett 1989;23(2):125–32.

    PubMed  CAS  Google Scholar 

  45. Venkataraman J, Fernandes G. Influence of food restriction and aging on the binding of insulin to liver nuclei in Fischer 344 rats. Age 1991;14:45–51.

    Google Scholar 

  46. Byun DS, Venkatraman JT, Yu BP, Fernandes G. Modulation of antioxidant activities and immune response by food restriction in aging Fisher-344 rats. Aging (Milano) 1995;7(1):40–8.

    CAS  Google Scholar 

  47. Higami Y, Barger JL, Page GP, Allison DB, Smith SR, Prolla TA, Weindruch R. Energy restriction lowers the expression of genes linked to inflammation, the cytoskeleton, the extracellular matrix, and angiogenesis in mouse adipose tissue. J Nutr 2006;136(2):343–52.

    PubMed  CAS  Google Scholar 

  48. Masoro EJ. Overview of caloric restriction and ageing. Mech Ageing Dev 2005;126(9):913–22.

    PubMed  CAS  Google Scholar 

  49. Masoro EJ. Caloric restriction and aging: controversial issues. J Gerontol A Biol Sci Med Sci 2006;61(1):14–9.

    PubMed  Google Scholar 

  50. Masoro EJ. Subfield history: caloric restriction, slowing aging, and extending life. Sci Aging Knowledge Environ 2003;2003(8):RE2.

    PubMed  Google Scholar 

  51. Roth GS, Handy AM, Mattison JA, Tilmont EM, Ingram DK, Lane MA. Effects of dietary caloric restriction and aging on thyroid hormones of rhesus monkeys. Horm Metab Res 2002;34(7):378–82.

    PubMed  CAS  Google Scholar 

  52. Lane MA, Mattison J, Ingram DK, Roth GS. Caloric restriction and aging in primates: Relevance to humans and possible CR mimetics. Microsc Res Tech 2002;59(4):335–8.

    PubMed  Google Scholar 

  53. Cefalu WT, Wagner JD, Bell-Farrow AD, Edwards IJ, Terry JG, Weindruch R, Kemnitz JW. Influence of caloric restriction on the development of atherosclerosis in nonhuman primates: progress to date. Toxicol Sci 1999;52(2 Suppl):49–55.

    PubMed  CAS  Google Scholar 

  54. Roth GS, Ingram DK, Lane MA. Caloric restriction in primates and relevance to humans. Ann NY Acad Sci 2001;928:305–15.

    Article  PubMed  CAS  Google Scholar 

  55. Heilbronn LK, de Jonge L, Frisard MI, DeLany JP, Larson-Meyer DE, Rood J, Nguyen T, Martin CK, Volaufova J, Most MM, Greenway FL, Smith SR, Deutsch WA, Williamson DA, Ravussin E. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. Jama 2006;295(13):1539–48.

    PubMed  CAS  Google Scholar 

  56. Masoro EJ. Caloric intake versus temporal pattern of food intake. Aging Clin Exp Res 2004;16(6):423–4.

    PubMed  Google Scholar 

  57. Bevilacqua L, Ramsey JJ, Hagopian K, Weindruch R, Harper ME. Long-term caloric restriction increases UCP3 content but decreases proton leak and reactive oxygen species production in rat skeletal muscle mitochondria. Am J Physiol Endocrinol Metab 2005;289(3):E429–38.

    PubMed  CAS  Google Scholar 

  58. Drew B, Phaneuf S, Dirks A, Selman C, Gredilla R, Lezza A, Barja G, Leeuwenburgh C. Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart. Am J Physiol Regul Integr Comp Physiol 2003;284(2):R474–80.

    PubMed  CAS  Google Scholar 

  59. Venkatraman JT, Chandrasekar B, Kim JD, Fernandes G. Effects of n-3 and n-6 fatty acids on the activities and expression of hepatic antioxidant enzymes in autoimmune-prone NZBxNZW F1 mice. Lipids 1994;29(8):561–8.

    PubMed  CAS  Google Scholar 

  60. Chandrasekar B, Fernandes G. Decreased pro-inflammatory cytokines and increased antioxidant enzyme gene expression by omega-3 lipids in murine lupus nephritis. Biochem Biophys Res Commun 1994;200(2):893–8.

    PubMed  CAS  Google Scholar 

  61. Sreekumar R, Unnikrishnan J, Fu A, Nygren J, Short KR, Schimke J, Barazzoni R, Nair KS. Effects of caloric restriction on mitochondrial function and gene transcripts in rat muscle. Am J Physiol Endocrinol Metab 2002;283(1):E38–43.

    PubMed  CAS  Google Scholar 

  62. Gredilla R, Lopez-Torres M, Barja G. Effect of time of restriction on the decrease in mitochondrial H2O2 production and oxidative DNA damage in the heart of food-restricted rats. Microsc Res Tech 2002;59(4):273–7.

    PubMed  CAS  Google Scholar 

  63. Lopez-Torres M, Gredilla R, Sanz A, Barja G. Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria. Free Radic Biol Med 2002;32(9):882–9.

    PubMed  CAS  Google Scholar 

  64. Barja G. Free radicals and aging. Trends Neurosci 2004;27(10):595–600.

    PubMed  CAS  Google Scholar 

  65. Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999;13(19):2570–80.

    PubMed  CAS  Google Scholar 

  66. Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 2004;101(45):15998–6003.

    PubMed  CAS  Google Scholar 

  67. Imai S, Johnson FB, Marciniak RA, McVey M, Park PU, Guarente L. Sir2: an NAD-dependent histone deacetylase that connects chromatin silencing, metabolism, and aging. Cold Spring Harb Symp Quant Biol 2000;65:297–302.

    PubMed  CAS  Google Scholar 

  68. Sauve AA, Schramm VL. Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry. Biochemistry 2003;42(31):9249–56.

    PubMed  CAS  Google Scholar 

  69. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. Embo J 2004;23(12):2369–80.

    PubMed  CAS  Google Scholar 

  70. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004;303(5666):2011–5.

    PubMed  CAS  Google Scholar 

  71. Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001;107(2):149–59.

    PubMed  CAS  Google Scholar 

  72. Guarente L, Picard F. Calorie restriction–the SIR2 connection. Cell 2005;120(4):473–82.

    PubMed  CAS  Google Scholar 

  73. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005;434(7029):113–8.

    PubMed  CAS  Google Scholar 

  74. Bang HO, Dyerberg J, Hjoorne N. The composition of food consumed by Greenland Eskimos. Acta Med Scand 1976;200(1–2):69–73.

    PubMed  CAS  Google Scholar 

  75. Yazawa K. Recent development of health foods enriched with DHA, EPA and DPA in Japan. World Rev Nutr Diet 2001;88:249–52.

    Article  PubMed  CAS  Google Scholar 

  76. Lands WE. Impact of daily food choices on health promotion and disease prevention. World Rev Nutr Diet 2001;88:1–5.

    PubMed  CAS  Google Scholar 

  77. Albert CM, Campos H, Stampfer MJ, Ridker PM, Manson JE, Willett WC, Ma J. Blood levels of long-chain n-3 fatty acids and the risk of sudden death. N Engl J Med 2002;346(15):1113–8.

    PubMed  CAS  Google Scholar 

  78. Harper CR, Jacobson TA. The fats of life: the role of omega-3 fatty acids in the prevention of coronary heart disease. Arch Intern Med 2001;161(18):2185–92.

    PubMed  CAS  Google Scholar 

  79. Kris-Etherton PM, Taylor DS, Yu-Poth S, Huth P, Moriarty K, Fishell V, Hargrove RL, Zhao G, Etherton TD. Polyunsaturated fatty acids in the food chain in the United States. Am J Clin Nutr 2000;71(1 Suppl):179S–88S.

    PubMed  CAS  Google Scholar 

  80. Thies F, Miles EA, Nebe-von-Caron G, Powell JR, Hurst TL, Newsholme EA, Calder PC. Influence of dietary supplementation with long-chain n-3 or n-6 polyunsaturated fatty acids on blood inflammatory cell populations and functions and on plasma soluble adhesion molecules in healthy adults. Lipids 2001;36(11):1183–93.

    PubMed  CAS  Google Scholar 

  81. Fung TT, Willett WC, Stampfer MJ, Manson JE, Hu FB. Dietary patterns and the risk of coronary heart disease in women. Arch Intern Med 2001;161(15):1857–62.

    PubMed  CAS  Google Scholar 

  82. Marchioli R, Barzi F, Bomba E, Chieffo C, Di Gregorio D, Di Mascio R, Franzosi MG, Geraci E, Levantesi G, Maggioni AP, Mantini L, Marfisi RM, Mastrogiuseppe G, Mininni N, Nicolosi GL, Santini M, Schweiger C, Tavazzi L, Tognoni G, Tucci C, Valagussa F. Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI)-Prevenzione. Circulation 2002;105(16):1897–903.

    PubMed  CAS  Google Scholar 

  83. Uauy R, Valenzuela A. Marine oils: the health benefits of n-3 fatty acids. Nutrition 2000;16(7–8):680–4.

    PubMed  CAS  Google Scholar 

  84. Hwang D. Fatty acids and immune responses–a new perspective in searching for clues to mechanism. Annu Rev Nutr 2000;20:431–56.

    PubMed  CAS  Google Scholar 

  85. Denys A, Hichami A, Khan NA. Eicosapentaenoic acid and docosahexaenoic acid modulate MAP kinase enzyme activity in human T-cells. Mol Cell Biochem 2002;232(1–2):143–8.

    PubMed  CAS  Google Scholar 

  86. Endres S, Meydani SN, Ghorbani R, Schindler R, Dinarello CA. Dietary supplementation with n-3 fatty acids suppresses interleukin-2 production and mononuclear cell proliferation. J Leukoc Biol 1993;54(6):599–603.

    PubMed  CAS  Google Scholar 

  87. Meydani SN. Effect of (n-3) polyunsaturated fatty acids on cytokine production and their biologic function. Nutrition 1996;12(1 Suppl):S8–14.

    PubMed  CAS  Google Scholar 

  88. Wu D, Meydani SN. n-3 polyunsaturated fatty acids and immune function. Proc Nutr Soc 1998;57(4):503–9.

    PubMed  CAS  Google Scholar 

  89. Lerman RH. Essential fatty acids. Altern Ther Health Med 2006;12(3):20–9; quiz 30-1.

    Google Scholar 

  90. Horrocks LA, Yeo YK. Health benefits of docosahexaenoic acid (DHA). Pharmacol Res 1999;40(3):211–25.

    PubMed  CAS  Google Scholar 

  91. Stark KD, Holub BJ. Differential eicosapentaenoic acid elevations and altered cardiovascular disease risk factor responses after supplementation with docosahexaenoic acid in postmenopausal women receiving and not receiving hormone replacement therapy. Am J Clin Nutr 2004;79(5):765–73.

    PubMed  CAS  Google Scholar 

  92. Mata Lopez P, Ortega RM. Omega-3 fatty acids in the prevention and control of cardiovascular disease. Eur J Clin Nutr 2003;57(Suppl 1):S22–5.

    PubMed  Google Scholar 

  93. Singer AL, Koretzky GA. Control of T cell function by positive and negative regulators. Science 2002;296(5573):1639–40.

    PubMed  CAS  Google Scholar 

  94. Hirafuji M, Machida T, Hamaue N, Minami M. Cardiovascular protective effects of n-3 polyunsaturated fatty acids with special emphasis on docosahexaenoic acid. J Pharmacol Sci 2003;92(4):308–16.

    PubMed  CAS  Google Scholar 

  95. Mori TA, Burke V, Puddey IB, Watts GF, O’Neal DN, Best JD, Beilin LJ. Purified eicosapentaenoic and docosahexaenoic acids have differential effects on serum lipids and lipoproteins, LDL particle size, glucose, and insulin in mildly hyperlipidemic men. Am J Clin Nutr 2000;71(5):1085–94.

    PubMed  CAS  Google Scholar 

  96. Rambjor GS, Walen AI, Windsor SL, Harris WS. Eicosapentaenoic acid is primarily responsible for hypotriglyceridemic effect of fish oil in humans. Lipids 1996;31(Suppl):S45–9.

    PubMed  Google Scholar 

  97. Alagona C, Soro A, Ylitalo K, Salonen R, Salonen JT, Taskinen MR. A low high density lipoprotein (HDL) level is associated with carotid artery intima-media thickness in asymptomatic members of low HDL families. Atherosclerosis 2002;165(2):309–16.

    PubMed  CAS  Google Scholar 

  98. Buckley R, Shewring B, Turner R, Yaqoob P, Minihane AM. Circulating triacylglycerol and apoE levels in response to EPA and docosahexaenoic acid supplementation in adult human subjects. Br J Nutr 2004;92(3):477–83.

    PubMed  CAS  Google Scholar 

  99. Kehn P, Fernandes G. The importance of omega-3 fatty acids in the attenuation of immune-mediated diseases. J Clin Immunol 2001;21(2):99–101.

    PubMed  CAS  Google Scholar 

  100. Duffy EM, Meenagh GK, McMillan SA, Strain JJ, Hannigan BM, Bell AL. The clinical effect of dietary supplementation with omega-3 fish oils and/or copper in systemic lupus erythematosus. J Rheumatol 2004;31(8):1551–6.

    PubMed  CAS  Google Scholar 

  101. Fernandes G, Chandrasekar B, Luan X, Troyer DA. Modulation of antioxidant enzymes and programmed cell death by n-3 fatty acids. Lipids 1996;31(Suppl):S91–6.

    PubMed  CAS  Google Scholar 

  102. Avula CP, Zaman AK, Lawrence R, Fernandes G. Induction of apoptosis and apoptotic mediators in Balb/C splenic lymphocytes by dietary n-3 and n-6 fatty acids. Lipids 1999;34(9):921–7.

    PubMed  CAS  Google Scholar 

  103. Grodzicky T, Elkon KB. Apoptosis in rheumatic diseases. Am J Med 2000;108(1):73–82.

    PubMed  CAS  Google Scholar 

  104. Prickett JD, Robinson DR, Steinberg AD. Dietary enrichment with the polyunsaturated fatty acid eicosapentaenoic acid prevents proteinuria and prolongs survival in NZB × NZW F1 mice. J Clin Invest 1981;68(2):556–9.

    PubMed  CAS  Google Scholar 

  105. Robinson DR, Prickett JD, Makoul GT, Steinberg AD, Colvin RB. Dietary fish oil reduces progression of established renal disease in (NZB × NZW)F1 mice and delays renal disease in BXSB and MRL/1 strains. Arthritis Rheum 1986;29(4):539–46.

    PubMed  CAS  Google Scholar 

  106. Robinson DR, Tateno S, Knoell C, Olesiak W, Xu L, Hirai A, Guo M, Colvin RB. Dietary marine lipids suppress murine autoimmune disease. J Intern Med Suppl 1989;731:211–6.

    PubMed  CAS  Google Scholar 

  107. Prickett JD, Trentham DE, Robinson DR. Dietary fish oil augments the induction of arthritis in rats immunized with type II collagen. J Immunol 1984;132(2):725–9.

    PubMed  CAS  Google Scholar 

  108. Jeng KC, Fernandes G. Effect of fish oil diet on immune response and proteinuria in mice. Proc Natl Sci Counc Repub China B 1991;15(2):105–10.

    PubMed  CAS  Google Scholar 

  109. Jolly CA, Muthukumar A, Reddy Avula CP, Fernandes G. Maintenance of NF-kappaB activation in T-lymphocytes and a naive T-cell population in autoimmune-prone (NZB/NZW)F(1) mice by feeding a food-restricted diet enriched with n-3 fatty acids. Cell Immunol 2001;213(2):122–33.

    PubMed  CAS  Google Scholar 

  110. Lim BO, Jolly CA, Zaman K, Fernandes G. Dietary (n-6) and (n-3) fatty acids and energy restriction modulate mesenteric lymph node lymphocyte function in autoimmune-prone (NZB × NZW)F1 mice. J Nutr 2000;130(7):1657–64.

    PubMed  CAS  Google Scholar 

  111. Muthukumar AR, Jolly CA, Zaman K, Fernandes G. Calorie restriction decreases proinflammatory cytokines and polymeric Ig receptor expression in the submandibular glands of autoimmune prone (NZB × NZW)F1 mice. J Clin Immunol 2000;20(5):354–61.

    PubMed  CAS  Google Scholar 

  112. Muthukumar A, Zaman K, Lawrence R, Barnes JL, Fernandes G. Food restriction and fish oil suppress atherogenic risk factors in lupus-prone (NZB × NZW) F1 mice. J Clin Immunol 2003;23(1):23–33.

    PubMed  CAS  Google Scholar 

  113. Muthukumar A, Sun D, Zaman K, Barnes JL, Haile D, Fernandes G. Age associated alterations in costimulatory and adhesion molecule expression in lupus-prone mice are attenuated by food restriction with n-6 and n-3 fatty acids. J Clin Immunol 2004;24(5):471–80.

    PubMed  CAS  Google Scholar 

  114. Reddy Avula CP, Lawrence RA, Zaman K, Fernandes G. Inhibition of intracellular peroxides and apoptosis of lymphocytes in lupus-prone B/W mice by dietary n-6 and n-3 lipids with calorie restriction. J Clin Immunol 2002;22(4):206–19.

    PubMed  CAS  Google Scholar 

  115. Thies F, Nebe-von-Caron G, Powell JR, Yaqoob P, Newsholme EA, Calder PC. Dietary supplementation with eicosapentaenoic acid, but not with other long-chain n-3 or n-6 polyunsaturated fatty acids, decreases natural killer cell activity in healthy subjects aged >55 y. Am J Clin Nutr 2001;73(3):539–48.

    PubMed  CAS  Google Scholar 

  116. Calder PC, Yaqoob P, Thies F, Wallace FA, Miles EA. Fatty acids and lymphocyte functions. Br J Nutr 2002;87(Suppl 1):S31–48.

    Article  PubMed  CAS  Google Scholar 

  117. Calder PC. Polyunsaturated fatty acids, inflammation, and immunity. Lipids 2001;36(9):1007–24.

    PubMed  CAS  Google Scholar 

  118. Wallace FA, Miles EA, Calder PC. Activation state alters the effect of dietary fatty acids on pro-inflammatory mediator production by murine macrophages. Cytokine 2000;12(9):1374–9.

    PubMed  CAS  Google Scholar 

  119. Wallace FA, Miles EA, Evans C, Stock TE, Yaqoob P, Calder PC. Dietary fatty acids influence the production of Th1- but not Th2-type cytokines. J Leukoc Biol 2001;69(3):449–57.

    PubMed  CAS  Google Scholar 

  120. Arrington JL, Chapkin RS, Switzer KC, Morris JS, McMurray DN. Dietary n-3 polyunsaturated fatty acids modulate purified murine T-cell subset activation. Clin Exp Immunol 2001;125(3):499–507.

    PubMed  CAS  Google Scholar 

  121. Arrington JL, McMurray DN, Switzer KC, Fan YY, Chapkin RS. Docosahexaenoic acid suppresses function of the CD28 costimulatory membrane receptor in primary murine and Jurkat T cells. J Nutr 2001;131(4):1147–53.

    PubMed  CAS  Google Scholar 

  122. Clarke SD. Polyunsaturated fatty acid regulation of gene transcription: a molecular mechanism to improve the metabolic syndrome. J Nutr 2001;131(4):1129–32.

    PubMed  CAS  Google Scholar 

  123. Price PT, Nelson CM, Clarke SD. Omega-3 polyunsaturated fatty acid regulation of gene expression. Curr Opin Lipidol 2000;11(1):3–7.

    PubMed  CAS  Google Scholar 

  124. Serhan CN, Arita M, Hong S, Gotlinger K. Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids 2004;39(11):1125–32.

    PubMed  CAS  Google Scholar 

  125. Serhan CN. Novel eicosanoid and docosanoid mediators: resolvins, docosatrienes, and neuroprotectins. Curr Opin Clin Nutr Metab Care 2005;8(2):115–21.

    Article  PubMed  CAS  Google Scholar 

  126. Bays H. Clinical overview of Omacor: a concentrated formulation of omega-3 polyunsaturated fatty acids. Am J Cardiol 2006;98(4A):71i–6i.

    PubMed  CAS  Google Scholar 

  127. Fernandes G, Bysani C, Venkatraman JT, Tomar V, Zhao W. Increased TGF-beta and decreased oncogene expression by omega-3 fatty acids in the spleen delays onset of autoimmune disease in B/W mice. J Immunol 1994;152(12):5979–87.

    PubMed  CAS  Google Scholar 

  128. Chandrasekar B, Troyer DA, Venkatraman JT, Fernandes G. Dietary omega-3 lipids delay the onset and progression of autoimmune lupus nephritis by inhibiting transforming growth factor beta mRNA and protein expression. J Autoimmun 1995;8(3):381–93.

    PubMed  CAS  Google Scholar 

  129. Chandrasekar B, McGuff HS, Aufdermorte TB, Troyer DA, Talal N, Fernandes G. Effects of calorie restriction on transforming growth factor beta 1 and proinflammatory cytokines in murine Sjogren’s syndrome. Clin Immunol Immunopathol 1995;76(3 Pt 1):291–6.

    PubMed  CAS  Google Scholar 

  130. Sun D, Krishnan A, Zaman K, Lawrence R, Bhattacharya A, Fernandes G. Dietary n-3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized mice. J Bone Miner Res 2003;18(7):1206–16.

    PubMed  CAS  Google Scholar 

  131. Bhattacharya A, Rahman M, Banu J, Lawrence RA, McGuff HS, Garrett IR, Fischbach M, Fernandes G. Inhibition of osteoporosis in autoimmune disease prone MRL/Mpj-Fas(lpr) mice by N-3 fatty acids. J Am Coll Nutr 2005;24(3):200–9.

    PubMed  CAS  Google Scholar 

  132. Watkins BA, Lippman HE, Le Bouteiller L, Li Y, Seifert MF. Bioactive fatty acids: role in bone biology and bone cell function. Prog Lipid Res 2001;40(1–2):125–48.

    PubMed  CAS  Google Scholar 

  133. Li Y, Seifert MF, Ney DM, Grahn M, Grant AL, Allen KG, Watkins BA. Dietary conjugated linoleic acids alter serum IGF-I and IGF binding protein concentrations and reduce bone formation in rats fed (n-6) or (n-3) fatty acids. J Bone Miner Res 1999;14(7):1153–62.

    PubMed  CAS  Google Scholar 

  134. Rosen CJ. Serum insulin-like growth factors and insulin-like growth factor-binding proteins: clinical implications. Clin Chem 1999;45(8 Pt 2):1384–90.

    PubMed  CAS  Google Scholar 

  135. Kalu DN, Hardin RR, Cockerham R, Yu BP, Norling BK, Egan JW. Lifelong food restriction prevents senile osteopenia and hyperparathyroidism in F344 rats. Mech Ageing Dev 1984;26(1):103–12.

    PubMed  CAS  Google Scholar 

  136. Banu J, Orhii PB, Okafor MC, Wang L, Kalu DN. Analysis of the effects of growth hormone, exercise and food restriction on cancellous bone in different bone sites in middle-aged female rats. Mech Ageing Dev 2001;122(8):849–64.

    PubMed  CAS  Google Scholar 

  137. Banu MJ, Orhii PB, Mejia W, McCarter RJ, Mosekilde L, Thomsen JS, Kalu DN. Analysis of the effects of growth hormone, voluntary exercise, and food restriction on diaphyseal bone in female F344 rats. Bone 1999;25(4):469–80.

    PubMed  CAS  Google Scholar 

  138. Talbott SM, Cifuentes M, Dunn MG, Shapses SA. Energy restriction reduces bone density and biomechanical properties in aged female rats. J Nutr 2001;131(9):2382–7.

    PubMed  CAS  Google Scholar 

  139. Boyer PM, Compagnucci GE, Olivera MI, Bozzini C, Roig MC, Compagnucci CV, Alippi RM. Bone status in an animal model of chronic sub-optimal nutrition: a morphometric, densitometric and mechanical study. Br J Nutr 2005;93(5):663–9.

    PubMed  CAS  Google Scholar 

  140. Lane MA, Reznick AZ, Tilmont EM, Lanir A, Ball SS, Read V, Ingram DK, Cutler RG, Roth GS. Aging and food restriction alter some indices of bone metabolism in male rhesus monkeys (Macaca mulatta). J Nutr 1995;125(6):1600–10.

    PubMed  CAS  Google Scholar 

  141. Kang JX, Wang J, Wu L, Kang ZB. Transgenic mice: fat-1 mice convert n-6 to n-3 fatty acids. Nature 2004;427(6974):504.

    PubMed  CAS  Google Scholar 

  142. Kang JX. From fat to fat-1: a tale of omega-3 fatty acids. J Membr Biol 2005;206(2):165–72.

    PubMed  CAS  Google Scholar 

  143. Ma DW, Ngo V, Huot PS, Kang JX. N-3 polyunsaturated fatty acids endogenously synthesized in fat-1 mice are enriched in the mammary gland. Lipids 2006;41(1):35–9.

    PubMed  CAS  Google Scholar 

  144. Lai L, Kang JX, Li R, Wang J, Witt WT, Yong HY, Hao Y, Wax DM, Murphy CN, Rieke A, Samuel M, Linville ML, Korte SW, Evans RW, Starzl TE, Prather RS, Dai Y. Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol 2006;24(4):435–6.

    PubMed  CAS  Google Scholar 

  145. Bhattacharya A, Chandrasekar B, Rahman MM, Banu J, Kang JX, Fernandes G. Inhibition of inflammatory response in transgenic fat-1 mice on a calorie-restricted diet. Biochem Biophys Res Commun 2006;349(3):925–30.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The current ongoing work is supported by NIH grants AG023648 and AG 027562. Also thanks to Dr. Jameela Banu for her kind help in preparing this review paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Fernandes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, G. Progress in nutritional immunology. Immunol Res 40, 244–261 (2008). https://doi.org/10.1007/s12026-007-0021-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-007-0021-3

Keywords

Navigation