Skip to main content

Advertisement

Log in

CD19+ Tim-1+ B cells are decreased and negatively correlated with disease severity in Myasthenia Gravis patients

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

T cell immunoglobulin mucin domain-1(Tim-1) was recently identified to be critical and essential for optimal regulatory B cells function in maintaining immune tolerance. We aimed to measure the expression levels of Tim-1 on B cells from patients with Myasthenia Gravis (MG) and to investigate whether the expression of Tim-1 is associated with pathogenesis of MG. A total of 34 patients with MG (18 generalized MG (GMG) and 16 ocular MG (OMG) and 24 healthy donors were recruited in this study. The quantitative myasthenia gravis score (QMGS) was used to evaluate the clinical severity. Real-time PCR and flow cytometry were used to measure the levels of Tim-1 expressed on peripheral B cells. Peripheral CD138+ plasma cells were assayed by flow cytometry. Serum Th17-related cytokines (IL-6, IL-1β and IL-17) and anti-AChR antibody (Ab) titers were tested by enzyme-linked immunosorbent assay (ELISA). Our data demonstrated that the mRNA and protein expression levels of B cell Tim-1 in both the GMG and OMG groups were significantly lower than those in healthy controls, with lower expression in GMG than in OMG. Tim-1 expression on B cells from OMG/GMG was negatively correlated with clinical severity, plasma cells frequency, serum Th17-related cytokines and anti-AChR Ab levels. Our results indicated that aberrant expression of Tim-1 exists on B cells and may contribute to the Th17 polarization and antibody-secreting plasma cells differentiation in MG patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Heldal AT, Owe JF, Gilhus NE, Romi F. Seropositive myasthenia gravis: a nationwide epidemiologic study. Neurology. 2009;73(2):150–1.

    Article  PubMed  Google Scholar 

  2. Lindstrom JM, Seybold ME, Lennon VA, Whittingham S, Duane DD. Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates, and diagnostic value. Neurology. 1976;26(11):1054–9.

    Article  CAS  PubMed  Google Scholar 

  3. Vincent A, Newsom-Davis J. Acetylcholine receptor antibody as a diagnostic test for myasthenia gravis: results in 153 validated cases and 2967 diagnostic assays. J Neurol Neurosurg Psychiatry. 1985;48(12):1246–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Han J, Sun L, Fan X, et al. Role of regulatory b cells in neuroimmunologic disorders. J Neurosci Res. 2016;. doi:10.1002/jnr.23749.

    PubMed Central  Google Scholar 

  5. Clatworthy MR, Watson CJ, Plotnek G, et al. B-cell-depleting induction therapy and acute cellular rejection. N Engl J Med. 2009;360(25):2683–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gregersen JW, Jayne DR. B-cell depletion in the treatment of lupus nephritis. Nat Rev Nephrol. 2012;8(9):505–14. doi:10.1038/nrneph.2012.141.

    Article  CAS  PubMed  Google Scholar 

  7. DiLillo DJ, Matsushita T. Tedder TF.B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Ann N Y Acad Sci. 2010;1183:38–57.

    Article  CAS  PubMed  Google Scholar 

  8. Umetsu SE, Lee WL, McIntire JJ, et al. TIM-1 induces T cell activation and inhibits the development of peripheral tolerance. Nat Immunol. 2005;6(5):447–54.

    Article  CAS  PubMed  Google Scholar 

  9. Xiao S, Zhu B, Jin H, et al. Tim-1 stimulation of dendritic cells regulates the balance between effector and regulatory T cells. Eur J Immunol. 2011;41(6):1539–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wong SH, Barlow JL, Nabarro S, Fallon PG, McKenzie AN. Tim-1 is induced on germinal centre B cells through B-cell receptor signalling but is not essential for the germinal centre response. Immunology. 2010;131:77–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ding Q, Yeung M, Camirand G, et al. Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in mice. J Clin Invest. 2011;121:3645–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xiao S, Brooks CR, Sobel RA, Kuchroo VK. Tim-1 is essential for induction and maintenance of IL-10 in regulatory B cells and their regulation of tissue inflammation. J Immunol. 2015;194(4):1602–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yeung MY, Ding Q, Brooks CR, et al. TIM-1 signaling is required for maintenance and induction of regulatory B cells. Am J Transpl. 2015;15(4):942–53.

    Article  CAS  Google Scholar 

  14. Drachman DB. Medical progress: myasthenia gravis. N Engl J Med. 1994;330:1797–810.

    Article  CAS  PubMed  Google Scholar 

  15. Osserman KE, Genkins G. Studies in myasthenia gravis: review of a twenty-year experience in over 1200 patients. Mt Sinai J Med. 1971;38:497–537.

    CAS  PubMed  Google Scholar 

  16. Sharshar T, Chevret S, Mazighi M, et al. Validity and reliability of two muscle strength scores commonly used as endpoints in assessing treatment of myasthenia gravis. J Neurol. 2000;247(4):286–90.

    Article  CAS  PubMed  Google Scholar 

  17. Yang H, Goluszko E, David C, et al. Mapping myasthenia gravis associated T cell epitopes on human acetylcholine receptors in HLA transgenic mice. J Clin Invest. 2002;109:1111–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yoshikawa H, Satoh K, Yasukawa Y, Yamada M. Cytokine secretion by peripheral blood mononuclear cells in myasthenia gravis. J Clin Neurosci. 2002;9:133–6.

    Article  CAS  PubMed  Google Scholar 

  19. Daien C, Gailhac S, Mura T, et al. Regulatory B10 cells are decreased in patients with rheumatoid arthritis and are inversely correlated with disease activity. Arthritis Rheumatol. 2014;66(8):2037–46.

    Article  CAS  PubMed  Google Scholar 

  20. Heinemann K, Wilde B, Hoerning A, et al. Decreased IL-10+ regulatory B cells (Bregs) in lupus nephritis patients. Scand J Rheumatol. 2016;7:1–5 [Epub ahead of print].

    Google Scholar 

  21. Knippenberg S, Peelen E, Smolders J. Reduction in IL-10 producing B cells (Breg) in multiple sclerosis is accompanied by a reduced naïve/memory Breg ratio during a relapse but not in remission. J Neuroimmunol. 2011;239(1–2):80–6.

    Article  CAS  PubMed  Google Scholar 

  22. Sun F, Ladha SS, Yang L, et al. Interleukin-10 producing-B cells and their association with responsiveness to rituximab in myasthenia gravis. Muscle Nerve. 2014;49(4):487–94.

    Article  CAS  PubMed  Google Scholar 

  23. Xiao S, Brooks CR, Zhu C, et al. Defect in regulatory B-cell function and development of systemic autoimmunity in T-cell Ig mucin 1 (Tim-1) mucin domain-mutant mice. Proc Natl Acad Sci USA. 2012;109(30):12105–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gray M, Miles K, Salter D, Gray D, Savill J. Apoptotic cells protect mice from autoimmune inflammation by the induction of regulatory B cells. Proc Natl Acad Sci USA. 2007;104(35):14080–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miles K, Heaney J, Sibinska Z, et al. A tolerogenic role for Toll-like receptor 9 is revealed by B-cell interaction with DNA complexes expressed on apoptotic cells. Proc Natl Acad Sci USA. 2010;109(3):887–92.

    Article  Google Scholar 

  26. Mu L, Sun B, Kong Q, et al. Disequilibrium of T helper type 1, 2 and 17 cells and regulatory T cells during the development of experimental autoimmune myasthenia gravis. Immunology. 2009;128(1 Suppl):e826–36.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Aricha R, Mizrachi K, Fuchs S, Souroujon MC. Blocking of IL-6 suppresses experimental autoimmune myasthenia gravis. J Autoimmun. 2011;36(2):135–41.

    Article  CAS  PubMed  Google Scholar 

  28. Alahgholi-Hajibehzad M, Oflazer P, Aysal F, et al. Regulatory function of CD4+ CD25++ T cells in patients with myasthenia gravis is associated with phenotypic changes and STAT5 signaling: 1,25-Dihydroxyvitamin D3 modulates the suppressor activity. J Neuroimmunol. 2015;281:51–60.

    Article  CAS  PubMed  Google Scholar 

  29. Korn T, Bettelli E, Oukka M. Kuchroo VK.IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485–517.

    Article  CAS  PubMed  Google Scholar 

  30. Doreau A, Belot A, Bastid J, et al. Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus. Nat Immunol. 2009;10(7):778–85.

    Article  CAS  PubMed  Google Scholar 

  31. Schaffert H, Pelz A, Saxena A, et al. IL-17-producing CD4(+) T cells contribute to the loss of B-cell tolerance in experimental autoimmune myasthenia gravis. Eur J Immunol. 2015;45(5):1339–47.

    Article  CAS  PubMed  Google Scholar 

  32. Hoffman W, Lakkis FG, Chalasani G. B cells, antibodies, and More. Clin J Am Soc Nephrol. 2016;11(1):137–54.

    Article  CAS  PubMed  Google Scholar 

  33. Li Z, Ju Z, Frieri M. The T-cell immunoglobulin and mucin domain (Tim) gene family in asthma, allergy, and autoimmunity. Allergy Asthma Proc. 2013;34(1):e21–6.

    Article  CAS  PubMed  Google Scholar 

  34. de Souza AJ, Oriss TB, O’malley KJ, Ray A, Kane LP. T cell Ig and mucin 1 (TIM-1) is expressed on in vivo-activated T cells and provides a costimulatory signal for T cell activation. Proc Natl Acad Sci USA. 2005;102(47):17113–8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yang H, Zhang Y, Wu M, Li J, Zhou W, Li G, Li X, Xiao B, Christadoss P. Suppression of ongoing experimental autoimmune myasthenia gravis by transfer of RelB-silenced bone marrow dentritic cells is associated with a change from a T helper Th17/Th1 to a Th2 and FoxP3+ regulatory T-cell profile. Inflamm Res. 2010;59(3):197–205.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all patients and normal control persons for their collaboration. This work was supported by National Nature Science Foundation of China (81571579, 81072465), Natural Science Fund of the Educational Committee of Jiangsu Province (10KJD320003), Special foundation of president of the Xuzhou Medical College (2010KJZ01), Key medical talents fund of Jiangsu Province (H201130), Jiangsu Province ordinary university postgraduate research innovation fund (CXLX11_0734), Innovation and entrepreneurship training program for college students in Jiangsu Province (201610313038Y).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Zhang or Chenghua Xiao.

Ethics declarations

Disclosures

The authors have no financial conflict of interest.

Additional information

Yong Zhang, Xiuying Zhang and Yan Xia have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 662 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, X., Xia, Y. et al. CD19+ Tim-1+ B cells are decreased and negatively correlated with disease severity in Myasthenia Gravis patients. Immunol Res 64, 1216–1224 (2016). https://doi.org/10.1007/s12026-016-8872-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-016-8872-0

Keywords

Navigation