Skip to main content

Advertisement

Log in

Potential Non-Hypoxic/Ischemic Causes of Increased Cerebral Interstitial Fluid Lactate/Pyruvate Ratio: A Review of Available Literature

  • Review Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Microdialysis, an in vivo technique that permits collection and analysis of small molecular weight substances from the interstitial space, was developed more than 30 years ago and introduced into the clinical neurosciences in the 1990s. Today cerebral microdialysis is an established, commercially available clinical tool that is focused primarily on markers of cerebral energy metabolism (glucose, lactate, and pyruvate) and cell damage (glycerol), and neurotransmitters (glutamate). Although the brain comprises only 2% of body weight, it consumes 20% of total body energy. Consequently, the ability to monitor cerebral metabolism can provide significant insights during clinical care. Measurements of lactate, pyruvate, and glucose give information about the comparative contributions of aerobic and anaerobic metabolisms to brain energy. The lactate/pyruvate ratio reflects cytoplasmic redox state and thus provides information about tissue oxygenation. An elevated lactate pyruvate ratio (>40) frequently is interpreted as a sign of cerebral hypoxia or ischemia. However, several other factors may contribute to an elevated LPR. This article reviews potential non-hypoxic/ischemic causes of an increased LPR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CBF:

Cerebral blood flow

CMD:

Cerebral microdialysis

ETC:

Electron transport chain

G6P:

Glucose-6-phosphate

Gln:

Glutamine

Glu:

Glutamate

ICP:

Intracranial pressure

LDH:

Lactate dehydrogenase

LPR:

Lactate/pyruvate ratio

LPS:

Lipopolysaccharide

MAS:

Malate-aspartate shuttle

NMR:

Nuclear magnetic resonance

PDH:

Pyruvate dehydrogenase

PG:

Propylene glycol

SAH:

Subarachnoid hemorrhage

TBI:

Traumatic brain injury

References

  1. Ungerstedt U, Pycock C. Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss. 1974;30:44–55.

    PubMed  CAS  Google Scholar 

  2. Chefer VI, Thompson AC, Zapata A, Shippenberg TS. Overview of brain microdialysis. Curr Protoc Neurosci. 2009;47:7.1.1–1.28.

    Google Scholar 

  3. Torregrossa MM, Kalivas PW. Microdialysis and the neurochemistry of addiction. Pharmacol Biochem Behav. 2008;90:261–72.

    Article  PubMed  CAS  Google Scholar 

  4. Meeusen R. Exercise and the brain: insight in new therapeutic modalities. Ann Transplant. 2005;10:49–51.

    PubMed  Google Scholar 

  5. van der Zeyden M, Oldenziel WH, Rea K, Cremers TI, Westerink BH. Microdialysis of GABA and glutamate: analysis, interpretation and comparison with microsensors. Pharmacol Biochem Behav. 2008;90:135–47.

    Article  PubMed  CAS  Google Scholar 

  6. Li Y, Peris J, Zhong L, Derendorf H. Microdialysis as a tool in local pharmacodynamics. AAPS J. 2006;8:E222–35.

    PubMed  CAS  Google Scholar 

  7. Stiller CO, Taylor BK, Linderoth B, Gustafsson H, Warsame Afrah A, Brodin E. Microdialysis in pain research. Adv Drug Deliv Rev. 2003;55:1065–79.

    Article  PubMed  CAS  Google Scholar 

  8. Meyerson BA, Linderoth B, Karlsson H, Ungerstedt U. Extracellular measurements in the thalamus of parkinsonian patients. Life Sci. 1990;46:301–8.

    Article  PubMed  CAS  Google Scholar 

  9. Hillered L, Vespa PM, Hovda DA. Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma. 2005;22:3–41.

    Article  PubMed  Google Scholar 

  10. Bellander BM, Cantais E, Enblad P, et al. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med. 2004;30:2166–9.

    Article  PubMed  Google Scholar 

  11. Belli A, Sen J, Petzold A, Russo S, Kitchen N, Smith M. Metabolic failure precedes intracranial pressure rises in traumatic brain injury: a microdialysis study. Acta Neurochir (Wien). 2008;150:461–9.

    Article  CAS  Google Scholar 

  12. Adamides AA, Rosenfeldt FL, Winter CD, et al. Brain tissue lactate elevations predict episodes of intracranial hypertension in patients with traumatic brain injury. J Am Coll Surg. 2009;209:531–9.

    Article  PubMed  Google Scholar 

  13. Ungerstedt U, Rostami E. Microdialysis in neurointensive care. Curr Pharm Des. 2004;10:2145–52.

    Article  PubMed  CAS  Google Scholar 

  14. Goodman JC, Robertson CS. Microdialysis: is it ready for prime time? Curr Opin Crit Care. 2009;15:110–7.

    Article  PubMed  Google Scholar 

  15. Nordström CH. Cerebral energy metabolism and microdialysis in neurocritical care. Childs Nerv Syst. 2010;26:465–72.

    Article  PubMed  Google Scholar 

  16. Tisdall MM, Smith M. Cerebral microdialysis: research technique or clinical tool. Br J Anaesth. 2006;97:18–25.

    Article  PubMed  CAS  Google Scholar 

  17. Oddo M, Schmidt JM, Carrera E, et al. Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med. 2008;36:3233–8.

    Article  PubMed  CAS  Google Scholar 

  18. Vespa PM, McArthur D, O’Phelan K, et al. Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab. 2003;23:865–77.

    Article  PubMed  CAS  Google Scholar 

  19. Oddo M, Milby A, Chen I, et al. Hemoglobin concentration and cerebral metabolism in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2009;40:1275–81.

    Article  PubMed  CAS  Google Scholar 

  20. Nordström CH, Reinstrup P, Xu W, Gärdenfors A, Ungerstedt U. Assessment of the lower limit for cerebral perfusion pressure in severe head injuries by bedside monitoring of regional energy metabolism. Anesthesiology. 2003;98:809–14.

    Article  PubMed  Google Scholar 

  21. Vespa PM, Miller C, McArthur D, et al. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med. 2007;35:2830–6.

    Article  PubMed  Google Scholar 

  22. Hashemi P, Bhatia R, Nakamura H, et al. Persisting depletion of brain glucose following cortical spreading depression, despite apparent hyperaemia: evidence for risk of an adverse effect of Leão’s spreading depression. J Cereb Blood Flow Metab. 2009;29:166–75.

    Article  PubMed  CAS  Google Scholar 

  23. Schneweis S, Grond M, Staub F, et al. Predictive value of neurochemical monitoring in large middle cerebral artery infarction. Stroke. 2001;32:1863–7.

    Article  PubMed  CAS  Google Scholar 

  24. Nortje J, Coles JP, Timofeev I, et al. Effect of hyperoxia on regional oxygenation and metabolism after severe traumatic brain injury: preliminary findings. Crit Care Med. 2008;36:273–81.

    Article  PubMed  CAS  Google Scholar 

  25. Marcoux J, McArthur DA, Miller C, et al. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med. 2008;36:2871–7.

    Article  PubMed  CAS  Google Scholar 

  26. Hillered L, Persson L, Nilsson P, Ronne-Engstrom E, Enblad P. Continuous monitoring of cerebral metabolism in traumatic brain injury: a focus on cerebral microdialysis. Curr Opin Crit Care. 2006;12:112–8.

    Article  PubMed  Google Scholar 

  27. Leegsma-Vogt G, van der Werf S, Venema K, Korf J. Modeling cerebral arteriovenous lactate kinetics after intravenous lactate infusion in the rat. J Cereb Blood Flow Metab. 2004;24:1071–80.

    Article  PubMed  CAS  Google Scholar 

  28. Miller LP, Oldendorf WH. Regional kinetic constants for blood-brain barrier pyruvic acid transport in conscious rats by the monocarboxylic acid carrier. J Neurochem. 1986;46:1412–6.

    Article  PubMed  CAS  Google Scholar 

  29. Hutchinson PJ, O’Connell MT, Al-Rawi PG, et al. Clinical cerebral microdialysis: a methodological study. J Neurosurg. 2000;93:37–43.

    Article  PubMed  CAS  Google Scholar 

  30. Nelson DL, Cox MM. Lehninger principles of biochemistry. 5th ed. New York: WH Freeman; 2008.

    Google Scholar 

  31. Johnston AJ, Gupta AK. Advanced monitoring in the neurology intensive care unit: microdialysis. Curr Opin Crit Care. 2002;8:121–7.

    Article  PubMed  Google Scholar 

  32. Reinstrup P, Ståhl N, Mellergård P, Uski T, Ungerstedt U, Nordström CH. Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery. 2000;47:701–9.

    PubMed  CAS  Google Scholar 

  33. Gårdenfors A, Nilsson F, Skagerberg G, Ungerstedt U, Nordström CH. Cerebral physiological and biochemical changes during vasogenic brain edema induced by intrathecal injection of bacterial lipopolysaccharides in piglets. Acta Neurochir. 2002;144:601–8.

    Article  Google Scholar 

  34. Dusick JR, Glenn TC, Lee WN, et al. Increased pentose phosphate pathway flux after clinical traumatic brain injury: a [1, 2–13C2]glucose labeling study in humans. J Cereb Blood Flow Metab. 2007;27:1593–602.

    Article  PubMed  CAS  Google Scholar 

  35. Vespa P, Bergsneider M, Hattori N, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25:763–4.

    Article  PubMed  CAS  Google Scholar 

  36. Simpson NE, Han Z, Berendzen KM, et al. Magnetic resonance spectroscopic investigation of mitochondrial fuel metabolism and energetics in cultured human fibroblasts: effects of pyruvate dehydrogenase complex deficiency and dichloroacetate. Mol Genet Metab. 2006;89:97–105.

    Article  PubMed  CAS  Google Scholar 

  37. Nakasaki H, Ohta M, Soeda J, et al. Clinical and biochemical aspects of thiamine treatment for metabolic acidosis during total parenteral nutrition. Nutrition. 1997;13:110–7.

    Article  PubMed  CAS  Google Scholar 

  38. Tinsa F, Ben Amor S, Kaabachi N, Ben Lasouad M, Boussetta K, Bousnina S. Unusual case of thiamine responsive megaloblastic anemia. Tunis Med. 2009;87:159–63.

    PubMed  Google Scholar 

  39. Poggi-Travert F, Martin D, Billette de Villemeur T, et al. Metabolic intermediates in lactic acidosis: compounds, samples and interpretation. J Inherit Metab Dis. 1996;19:478–88.

    Article  PubMed  CAS  Google Scholar 

  40. Stacpoole PW, Wright EC, Baumgartner TG, et al. A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. The Dichloroacetate-Lactic Acidosis Study Group. NEJM. 1992;327:1564–9.

    Article  PubMed  CAS  Google Scholar 

  41. Hoppel CL, Kerr DS, Dahms B, Roessmann U. Deficiency of the reduced nicotinamide adenine dinucleotide dehydrogenase component of complex I of mitochondrial electron transport. Fatal infantile lactic acidosis and hypermetabolism with skeletal-cardiac myopathy and encephalopathy. J Clin Invest. 1987;80:71–7.

    Article  PubMed  CAS  Google Scholar 

  42. Moreadith RW, Batshaw ML, Ohnishi T, et al. Deficiency of the iron-sulfur clusters of mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase (complex I) in an infant with congenital lactic acidosis. J Clin Invest. 1984;74:685–97.

    Article  PubMed  CAS  Google Scholar 

  43. Robinson BH, McKay N, Goodyer P, Lancaster G. Defective intramitochondrial NADH oxidation in skin fibroblasts from an infant with fatal neonatal lacitcacidemia. Am J Hum Genet. 1985;37:938–46.

    PubMed  CAS  Google Scholar 

  44. Van Hove JL, Saenz MS, Thomas JA, et al. Succinyl-CoA ligase deficiency: a mitochondrial hepatoencephalomyopathy. Pediatr Res. 2010;68:159–64.

    Article  PubMed  CAS  Google Scholar 

  45. Chesney RW, Kaplan BS, Colle E, et al. Abnormalities of carbohydrate metabolism in idiopathic Fanconi syndrome. Pediatr Res. 1980;14:209–15.

    PubMed  CAS  Google Scholar 

  46. Boustany RN, Aprille JR, Halperin J, Levy H, DeLong GR. Mitochondrial cytochrome deficiency presenting as a myopathy with hypotonia, external ophthalmoplegia, and lactic acidosis in an infant and as fatal hepatopathy in a second cousin. Ann Neurol. 1983;14:462–70.

    Article  PubMed  CAS  Google Scholar 

  47. Komaki H, Nishigaki Y, Fuku N, et al. Pyruvate therapy for Leigh syndrome due to cytochrome c oxidase deficiency. Biochim Biophys Acta. 2010;1800:313–5.

    Article  PubMed  CAS  Google Scholar 

  48. Mannan AA, Sharma MC, Shrivastava P, et al. Leigh’s syndrome. Indian J Pediatr. 2004;71:1029–33.

    Article  PubMed  CAS  Google Scholar 

  49. Hertz L, Kala G. Energy metabolism in brain cells: effects of elevated ammonia concentrations. Metab Brain Dis. 2007;22:199–218.

    Article  PubMed  CAS  Google Scholar 

  50. Lin S, Raabe W. Ammonia intoxication: effects on cerebral cortex and spinal cord. J Neurochem. 1985;44:1252–8.

    Article  PubMed  CAS  Google Scholar 

  51. Adams JM, Feustel PJ, Donnelly DF, Dutton RE. Hypoxia, hyperammonemia, and cerebrospinal fluid metabolites. Adv Shock Res. 1978;1:209–20.

    PubMed  CAS  Google Scholar 

  52. O’Connor JE, Costell M, Grisolía S. Prevention of ammonia toxicity by L-carnitine: metabolic changes in brain. Neurochem Res. 1984;9:563–70.

    Article  PubMed  Google Scholar 

  53. Hindfelt B, Plum F, Duffy TE. Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J Clin Invest. 1977;59:386–96.

    Article  PubMed  CAS  Google Scholar 

  54. Bjerring PN, Hauerberg J, Frederiksen HJ, et al. Cerebral glutamine concentration and lactate-pyruvate ratio in patients with acute liver failure. Neurocrit Care. 2008;9:3–7.

    Article  PubMed  Google Scholar 

  55. Ratnakumari L, Murthy CR. Response of rat cerebral glycolytic enzymes to hyperammonemic states. Neurosci Lett. 1993;161:37–40.

    Article  PubMed  CAS  Google Scholar 

  56. Qureshi K, Rama Rao KV, Qureshi IA. Differential inhibition by hyperammonemia of the electron transport chain enzymes in synaptosomes and non-synaptic mitochondria in ornithine transcarbamylase-deficient spf-mice: restoration by acetyl-L-carnitine. Neurochem Res. 1998;23:855–61.

    Article  PubMed  CAS  Google Scholar 

  57. Ratnakumari L, Qureshi IA, Butterworth RF. Effects of congenital hyperammonemia on the cerebral and hepatic levels of the intermediates of energy metabolism in spf mice. Biochem Biophys Res Commun. 1992;184:746–51.

    Article  PubMed  CAS  Google Scholar 

  58. She P, Zhou Y, Zhang Z, Griffin K, Gowda K, Lynch CJ. Disruption of BCAA metabolism in mice impairs exercise metabolism and endurance. J Appl Physiol. 2010;108:941–9.

    Article  PubMed  CAS  Google Scholar 

  59. Kauppinen RA, Sihra TS, Nicholls DG. Aminooxyacetic acid inhibits the malate-aspartate shuttle in isolated nerve terminals and prevents the mitochondria from utilizing glycolytic substrates. Biochim Biophys Acta. 1987;930:173–8.

    Article  PubMed  CAS  Google Scholar 

  60. Nagasaka H, Okano Y, Tsukahara H, et al. Sustaining hypercitrullinemia, hypercholesterolemia and augmented oxidative stress in Japanese children with aspartate/glutamate carrier isoform 2-citrin-deficiency even during the silent period. Mol Genet Metab. 2009;97:21–6.

    Article  PubMed  CAS  Google Scholar 

  61. Hanley PJ, Ray J, Brandt U, Daut J. Halothane, isoflurane and sevoflurane inhibit NADH:ubiquinone oxidoreductase (complex I) of cardiac mitochondria. J Physiol. 2002;544:687–93.

    Article  PubMed  CAS  Google Scholar 

  62. Michenfelder JD, Theye RA. In vivo toxic effects of halothane on canine cerebral metabolic pathways. Am J Physiol. 1975;229:1050–5.

    PubMed  CAS  Google Scholar 

  63. Dahlbacka S, Mäkelä J, Kaakinen T, et al. Propofol is associated with impaired brain metabolism during hypothermic circulatory arrest: an experimental microdialysis study. Heart Surg Forum. 2006;9:E710–8.

    Article  PubMed  Google Scholar 

  64. Carles M, Dellamonica J, Roux J, et al. Sevoflurane but not propofol increases interstitial glycolysis metabolites availability during tourniquet-induced ischaemia-reperfusion. Br J Anaesth. 2008;100:29–35.

    Article  PubMed  CAS  Google Scholar 

  65. Marian M, Parrino C, Leo AM, Vincenti E, Bindoli A, Scutari G. Effect of the intravenous anesthetic 2,6-diisopropylphenol on respiration and energy production by rat brain synaptosomes. Neurochem Res. 1997;22:287–92.

    Article  PubMed  CAS  Google Scholar 

  66. Branca D, Roberti MS, Lorenzin P, Vincenti E, Scutari G. Influence of the anesthetic 2,6-diisopropylphenol on the oxidative phosphorylation of isolated rat liver mitochondria. Biochem Pharmacol. 1991;42:87–90.

    Article  PubMed  CAS  Google Scholar 

  67. Fudickar A, Bein B. Propofol infusion syndrome: update of clinical manifestation and pathophysiology. Minerva Anestesiol. 2009;75:339–44.

    PubMed  CAS  Google Scholar 

  68. Pisapia JM, Wendell LC, Kumar MA, Zager EL, Levine JM. Lactate-to-pyruvate ratio as a marker of propofol infusion syndrome after subarachnoid hemorrhage. Neurocrit Care. 2010. doi:10.1007/s12028-010-9467-6.

  69. Nam YT, Kim JS, Park KW. Effects of hypotensive anesthesia with sodium nitroprusside or isoflurane on hemodynamic and metabolic changes. Yonsei Med J. 1992;33:320–5.

    PubMed  CAS  Google Scholar 

  70. Michenfelder JD. Cyanide release from sodium nitroprusside in the dog. Anesthesiology. 1977;46:196–201.

    Article  PubMed  CAS  Google Scholar 

  71. Tinker JH, Michenfelder JD. Cardiac cyanide toxicity induced by nitroprusside in the dog: potential for reversal. Anesthesiology. 1978;49:109–16.

    Article  PubMed  CAS  Google Scholar 

  72. Dai YL, Luk TH, Siu CW, et al. Mitochondrial dysfunction induced by statin contributes to endothelial dysfunction in patients with coronary artery disease. Cardiovasc Toxicol. 2010;10:130–8.

    Article  PubMed  CAS  Google Scholar 

  73. Ruddick JA. Toxicology, metabolism, and biochemistry of 1,2-propanediol. Toxicol Appl Pharmacol. 1972;21:102–11.

    Article  PubMed  CAS  Google Scholar 

  74. Saini M, Nagpaul JP, Amma MK. Effect of propane-1,2-diol ingestion on carbohydrate metabolism in female rat erythrocytes. J Appl Toxicol. 1993;13:69–75.

    Article  PubMed  CAS  Google Scholar 

  75. Morshed KM, Nagpaul JP, Majumdar S, Amma MKP. Kinetics of oral propylene glycol-induced acute hyperlactatemia. Biochem Med Metab Biol. 1989;42:87–94.

    Article  PubMed  CAS  Google Scholar 

  76. Schölmerich J, Kitamura S, Miyai K. Effects of propylene glycol on redox state of the perfused rat liver—a note of caution. Res Exp Med (Berl). 1989;189:39–42.

    Article  Google Scholar 

  77. Wilson KC, Reardon C, Theodore AC, Farber HW. Propylene glycol toxicity: a severe iatrogenic illness in ICU patients receiving IV benzodiazepines. Chest. 2005;128:1674–81.

    Article  PubMed  CAS  Google Scholar 

  78. Barnes BJ, Gerst C, Smith JR, Terrell AR, Mullins ME. Osmol gap as a surrogate marker for serum propylene glycol concentrations in patients receiving lorazepam for sedation. Pharmacotherapy. 2006;26:23–33.

    Article  PubMed  CAS  Google Scholar 

  79. Ganesh A, Audu P. Hyperosmolar, increased-anion-gap metabolic acidosis and hyperglycemia after etomidate infusion. J Clin Anesth. 2008;20:290–3.

    Article  PubMed  CAS  Google Scholar 

  80. Szajewski J. Poisons information monographs: Propylene glycol. No. 443. Geneva, Switzerland: International Programme on Chemical Safety, 1994.

  81. Zar T, Graeber C, Perazella MA. Recognition, treatment, and prevention of propylene glycol toxicity. Sem Dial. 2007;20:217–9.

    Article  Google Scholar 

  82. Rengel-Aranda M, Gougoux A, Vinay P, Lopez-Novoa JM. Effect of valproate on renal metabolism in the intact dog. Kidney Int. 1988;34:645–54.

    Article  PubMed  CAS  Google Scholar 

  83. Dubas TC, Johnson WJ. Metformin-induced lactic acidosis: potentiation by ethanol. Res Commun Chem Pathol Pharmacol. 1981;33:21–31.

    PubMed  CAS  Google Scholar 

  84. Jalling O, Olsen C. The effects of metformin compared to the effects of phenformin on the lactate production and the metabolism of isolated parenchymal rat liver cell. Acta Pharmacol Toxicol (Copenh). 1984;54:327–32.

    Article  CAS  Google Scholar 

  85. Nattrass M, Hinks L, Smythe P, Todd PG, Alberti KGMM. Metabolic effects of combined sulphonylurea and metformin therapy in maturity-onset diabetes. Horm Metab Res. 1979;11:332–7.

    Article  PubMed  CAS  Google Scholar 

  86. Ramanathan S, Masih AK, Ashok U, Arismendy J, Turndorf H. Concentrations of lactate and pyruvate in maternal and neonatal blood with different intravenous fluids used for prehydration before epidural anesthesia. Anesth Analg. 1984;63:69–74.

    Article  PubMed  CAS  Google Scholar 

  87. Pellerin L, Bouzier-Sore AK, Aubert A, et al. Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia. 2007;55:1251–62.

    Article  PubMed  Google Scholar 

  88. Brown AM, Ransom BR. Astrocyte glycogen and brain energy metabolism. Glia. 2007;55:1263–71.

    Article  PubMed  Google Scholar 

  89. Bittar PG, Charnay Y, Pellerin L, Bouras C, Magistretti PJ. Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J Cereb Blood Flow Metab. 1996;16:1079–89.

    Article  PubMed  CAS  Google Scholar 

  90. Abi-Saab WM, Maggs DG, Jones T, et al. Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia. J Cereb Blood Flow Metab. 2002;22:271–9.

    Article  PubMed  CAS  Google Scholar 

  91. Agardh CD, Folbergrová J, Siesjö BK. Cerebral metabolic changes in profound, insulin-induced hypoglycemia, and in the recovery period following glucose administration. J Neurochem. 1978;31:1135–42.

    Article  PubMed  CAS  Google Scholar 

  92. Cardell M, Siesjö BK, Wieloch T. Changes in pyruvate dehydrogenase complex activity during and following severe insulin-induced hypoglycemia. J Cereb Blood Flow Metab. 1991;11:122–8.

    Article  PubMed  CAS  Google Scholar 

  93. Schlenk F, Nagel A, Graetz D, Sarrafzadeh AS. Hyperglycemia and cerebral glucose in aneurysmal subarachnoid hemorrhage. Intensive Care Med. 2008;34:1200–7.

    Article  PubMed  CAS  Google Scholar 

  94. Vespa P, Boonyaputthikul R, McArthur DL, et al. Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving the lactate/pyruvate ratio after traumatic brain injury. Crit Care Med. 2006;34:850–6.

    Article  PubMed  CAS  Google Scholar 

  95. Kennan RP, Takahashi K, Pan C, Shamoon H, Pan JW. Human cerebral blood flow and metabolism in acute insulin-induced hypoglycemia. J Cereb Blood Flow Metab. 2005;25:527–34.

    Article  PubMed  CAS  Google Scholar 

  96. Choi IY, Lee SP, Kim SG, Gruetter R. In vivo measurements of brain glucose transport using the reversible Michaelis-Menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia. J Cereb Blood Flow Metab. 2001;21:653–63.

    Article  PubMed  CAS  Google Scholar 

  97. Eckert B, Ryding E, Agardh CD. Sustained elevation of cerebral blood flow after hypoglycaemia in normal man. Diabetes Res Clin Pract. 1998;40:91–100.

    Article  PubMed  CAS  Google Scholar 

  98. Rosdahl H, Samuelsson AC, Ungerstedt U, Henriksson J. Influence of adrenergic agonists on the release of amino acids from rat skeletal muscle studied by microdialysis. Acta Physiol Scand. 1998;163:349–60.

    Article  PubMed  CAS  Google Scholar 

  99. Levy B, Mansart A, Bollaert PE, Franck P, Mallie JP. Effects of epinephrine and norepinephrine on hemodynamics, oxidative metabolism, and organ energetics in endotoxemic rats. Intensive Care Med. 2003;29:292–300.

    PubMed  Google Scholar 

  100. Levy B, Bollaert PE, Charpentier C, et al. Comparison of norepinephrine and dobutamine to epinephrine for hemodynamics, lactate metabolism, and gastric tonometric variables in septic shock: a prospective, randomized study. Intensive Care Med. 1997;23:282–7.

    Article  PubMed  CAS  Google Scholar 

  101. Pernet A, Walker M, Gill GV, Ørskov H, Alberti KGMM, Johnston DG. Metabolic effects of adrenaline and noradrenaline in man: studies with somatostatin. Diabete Metab. 1984;10:98–105.

    PubMed  CAS  Google Scholar 

  102. Christensen NJ, Alberti KG, Brandsborg O. Plasma catecholamines and blood substrate concentrations: studies in insulin induced hypoglycaemia and after adrenaline infusions. Eur J Clin Invest. 1975;5:415–23.

    PubMed  CAS  Google Scholar 

  103. Heringlake M, Wernerus M, Grünefeld J, et al. The metabolic and renal effects of adrenaline and milrinone in patients with myocardial dysfunction after coronary artery bypass grafting. Crit Care. 2007;11:R51.

    Article  PubMed  Google Scholar 

  104. Cano A, Martínez P, Parrilla JJ, Abad L. Effects of intravenous ritodrine on lactate and pyruvate levels: role of glycemia and anaerobiosis. Obstet Gynecol. 1985;66:207–10.

    PubMed  CAS  Google Scholar 

  105. d’Avila JC, Santiago AP, Amâncio RT, et al. Sepsis induces brain mitochondrial dysfunction. Crit Care Med. 2008;36:1925–32.

    Article  PubMed  Google Scholar 

  106. Vary TC, Siegel JH, Nakatani T, Sato T, Aoyama H. Effect of sepsis on activity of pyruvate dehydrogenase complex in skeletal muscle and liver. Am J Physiol. 1986;250:E634–40.

    PubMed  CAS  Google Scholar 

  107. Malaisse WJ, Nadi AB, Ladriere L, Zhang TM. Protective effects of succinic acid dimethyl ester infusion in experimental endotoxemia. Nutrition. 1997;13:330–41.

    PubMed  CAS  Google Scholar 

  108. Gnaegi A, Feihl F, Boulat O, Waeber B, Liaudet L. Moderate hypercapnia exerts beneficial effects on splanchnic energy metabolism during endotoxemia. Intensive Care Med. 2009;35:1297–304.

    Article  PubMed  CAS  Google Scholar 

  109. Chvojka J, Sykora R, Krouzecky A, et al. Renal haemodynamic, microcirculatory, metabolic and histopathological responses to peritonitis-induced septic shock in pigs. Crit Care. 2008;12:R164.

    Article  PubMed  Google Scholar 

  110. Boekstegers P, Weidenhöfer S, Kapsner T, Werdan K. Skeletal muscle partial pressure of oxygen in patients with sepsis. Crit Care Med. 1994;22:640–50.

    Article  PubMed  CAS  Google Scholar 

  111. Astiz M, Rackow EC, Weil MH, Schumer W. Early impairment of oxidative metabolism and energy production in severe sepsis. Circ Shock. 1988;26:311–20.

    PubMed  CAS  Google Scholar 

  112. Blennow G, Folbergrová J, Nilsson B, Siesjö BK. Cerebral metabolic and circulatory changes in the rat during sustained seizures induced by DL-homocysteine. Brain Res. 1979;179:129–46.

    Article  PubMed  CAS  Google Scholar 

  113. Folbergrová J, Jesina P, Drahota Z, et al. Mitochondrial complex I inhibition in cerebral cortex of immature rats following homocysteic acid-induced seizures. Exp Neurol. 2007;204:597–609.

    Article  PubMed  CAS  Google Scholar 

  114. Howse DCN. Metabolic responses to status epilepticus in the rat, cat, and mouse. Can J Physiol Pharmacol. 1979;57:205–12.

    Article  PubMed  CAS  Google Scholar 

  115. Folbergrová J, Ingvar M, Nevander G, Siesjö BK. Cerebral metabolic changes during and following fluorothyl-induced seizures in ventilated rats. J Neurochem. 1985;44:1419–26.

    Article  PubMed  Google Scholar 

  116. Ingvar M, Folbergrová J, Siesjö BK. Metabolic alterations underlying the development of hypermetabolic necrosis in the substantia nigra in status epilepticus. J Cereb Blood Flow Metab. 1987;7:103–8.

    Article  PubMed  CAS  Google Scholar 

  117. Chapman AG, Meldrum BS, Siesjö BK. Cerebral metabolic changes during prolonged epileptic seizures in rats. J Neurochem. 1977;28:1025–35.

    Article  PubMed  CAS  Google Scholar 

  118. Johansson BB, Fredriksson K. Cerebral energy metabolism during bicuculline-induced status epilepticus in spontaneously hypertensive rats. Acta Phys Scand. 1985;123:299–302.

    Article  CAS  Google Scholar 

  119. Slais K, Vorisek I, Zoremba N, Homola A, Dmytrenko L, Sykova E. Brain metabolism and diffusion in the rat cerebral cortex during pilocarpine-induced status epilepticus. Exp Neurol. 2008;209:145–54.

    Article  PubMed  CAS  Google Scholar 

  120. Darbin O, Risso JJ, Carre E, Lonjon M, Naritoku DK. Metabolic changes in rat striatum following convulsive seizures. Brain Res. 2005;1050:124–9.

    Article  PubMed  CAS  Google Scholar 

  121. Claassen J, Jetté N, Chum F, et al. Electrographic seizures and periodic discharges after intracerebral hemorrhage. Neurology. 2007;69:1256–65.

    Article  Google Scholar 

  122. Folbergrová J, MacMillan V, Siesjö BK. The effect of moderate and marked hypercapnia upon the energy state and upon the cytoplasmic NADH-NAD+ ratio of the rat brain. J Neurochem. 1972;19:2497–505.

    Article  PubMed  Google Scholar 

  123. Folbergrová J, Pontén U, Siesjö BK. Patterns of changes in brain carbohydrate metabolites, amino acids and organic phosphates at increased carbon dioxide tensions. J Neurochem. 1974;22:1115–25.

    Article  PubMed  Google Scholar 

  124. Weyne J, Demeester G, Leusen I. Effects of carbon dioxide, bicarbonate, and pH on lactate and pyruvate in the brain of rats. Pflugers Arch. 1970;31:292–311.

    Article  Google Scholar 

  125. Kjällquist Å, Nardini M, Siesjö BK. The regulation of extra- and intracellular acid-base parameters in the rat brain during hyper- and hypocapnia. Acta Physiol Scand. 1969;76:485–94.

    Article  PubMed  Google Scholar 

  126. Granholm L, Siesjö BK. The effects of hypercapnia and hypocapnia upon the cerebrospinal fluid lactate and pyruvate concentrations and upon the lactate, pyruvate, ATP, ADP, phosphocreatine and creatine concentrations of cat brain tissue. Acta Physiol Scand. 1969;75:257–66.

    Article  PubMed  CAS  Google Scholar 

  127. Frauendorf E, Hartmann N, Hübner G, Meng W, Weber A. Das verhalten des laktat/pyruvat-quotienten im rahmen moderner schilddrüsendiagnostik. Z Gesamte Inn Med. 1980;35:155–61.

    PubMed  CAS  Google Scholar 

  128. Hübner G, Schwinger E, Meng W. Zum verhalten von laktat und pyruvat sowie des laktat/pyruvat-quotienten im blut bei schilddrüsenfunktionsstörungen des menschen. Z Gesamte Inn Med. 1975;30:786–9.

    PubMed  Google Scholar 

  129. Katyare SS, Joshi MV, Fatterpaker P, Sreenivasan A. Effect of thyroid deficiency on oxidative phosphorylation in rat liver, kidney, and brain mitochondria. Arch Biochem Biophys. 1977;182:155–63.

    Article  PubMed  CAS  Google Scholar 

  130. Lecky FE, Little RA, Maycock PF, et al. Effect of alcohol on the lactate/pyruvate ratio of recently injured adults. Crit Care Med. 2002;30:981–5.

    Article  PubMed  CAS  Google Scholar 

  131. Yap M, Mascord DJ, Starmer GA, Whitfield JB. Studies on the chronopharmacology of ethanol. Alcohol Alcohol. 1993;28:17–24.

    PubMed  CAS  Google Scholar 

  132. Myrsten AL, Rydberg U, Ideström CM, Lamble R. Alcohol intoxication and hangover: modification of hangover by chlormethiazole. Psychopharmacology (Berl). 1980;69:117–25.

    Article  CAS  Google Scholar 

  133. Ginestal da Cruz A, Correia JP, Menezes L. Ethanol metabolism in liver cirrhosis and chronic alcoholism. Acta Hepatogastroenterol (Stuttg). 1975;22:369–74.

    CAS  Google Scholar 

  134. Frayn KN, Coppack SW, Walsh PE, Butterworth HC, Humphreys SM, Pedrosa HC. Metabolic responses of forearm and adipose tissues to acute ethanol ingestion. Metabolism. 1990;39:958–66.

    Article  PubMed  CAS  Google Scholar 

  135. Hollstedt C, Rydberg U, Olsson O, Buijten J. Effects of ethanol on the developing rat. I. Ethanol metabolism and effects on lactate, pyruvate, and glucose concentrations. Med Biol. 1980;58:158–63.

    PubMed  CAS  Google Scholar 

  136. Pronko PS, Velichko MG, Moroz AR, Rubanovich NN. Low-molecular-weight metabolites relevant to ethanol metabolism: correlation with alcohol withdrawal severity and utility for identification of alcoholics. Alcohol Alcohol. 1997;32:761–8.

    PubMed  CAS  Google Scholar 

  137. Krebs HA, Freedland RA, Hems R, Stubbs M. Inhibition of hepatic gluconeogenesis by ethanol. Biochem J. 1969;112:117–24.

    PubMed  CAS  Google Scholar 

  138. Tskuamoto S, Kanegae T, Saito M, et al. Concentrations of blood and urine ethanol, acetaldehyde, acetate and acetone during experimental hangover in volunteers. Arukoru Kenkyuto Yakubutsu Ison. 1991;26:500–10.

    Google Scholar 

  139. Martin E, Rosenthal RE, Fiskum G. Pyruvate dehydrogenase complex: metabolic link to ischemic brain injury and target of oxidative stress. J Neurosci Res. 2005;79:240–7.

    Article  PubMed  CAS  Google Scholar 

  140. Ehrig K, Heckel R, Lajios G. Molecular analysis of metabolic pathway with graph transformation. Lect Notes Comput Sci. 2006;4178:107–21.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the helpful and insightful suggestions of Julien F. Biebuyck, David F. Wilson, Gretchen L. Redline, Marilyn G. Larach, and Sarah M. Gibbs in the preparation of the manuscript. DBL received financial support from the Clinical Neurosciences Training Program (CNST) Summer Research Fellowship program of the University of Pennsylvania School of Medicine.

Disclosure

PLR has received support and research funding from Integra LifeSciences (Plainsboro, NJ) and CMA Microdialysis (Solna, Sweden). WAK has received support and research funding from Covidien (Mansfield, MA) and the U.S. Public Health Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel B. Larach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larach, D.B., Kofke, W.A. & Le Roux, P. Potential Non-Hypoxic/Ischemic Causes of Increased Cerebral Interstitial Fluid Lactate/Pyruvate Ratio: A Review of Available Literature. Neurocrit Care 15, 609–622 (2011). https://doi.org/10.1007/s12028-011-9517-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-011-9517-8

Keywords

Navigation