Skip to main content

Advertisement

Log in

The Novel Cholinesterase–Monoamine Oxidase Inhibitor and Antioxidant, Ladostigil, Confers Neuroprotection in Neuroblastoma Cells and Aged Rats

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The current therapeutic advance in which future drugs are designed to possess varied pharmacological properties and act on multiple targets has stimulated the development of the multimodal drug, ladostigil (TV3326; (N-propargyl-(3R) aminoindan-5yl)-ethyl methyl carbamate). Ladostigil combines neuroprotective effects with monoamine oxidase (MAO)-A and MAO-B and cholinesterase (ChE) inhibitory activities in a single molecule, as a potential treatment for Alzheimer’s disease (AD) and Lewy body disease. In the present study, we demonstrate that ladostigil (10−6–10 μM) dose-dependently increased cell viability, associated with increased activity of catalase and glutathione reductase and decrease of intracellular reactive oxygen species production in a cytotoxic model of human SH-SY5Y neuroblastoma cells exposed to hydrogen peroxide (H2O2). In addition, ladostigil significantly upregulated mRNA levels of several antioxidant enzymes (catalase, NAD(P)H quinone oxidoreductase 1 and peroxiredoxin 1) in both H2O2-treated SH-SY5Y cells, as well as in the high-density human SK-N-SH neuroblastoma cultured apoptotic models. In vivo chronic treatment with ladostigil (1 mg/kg per os per day for 30 days) markedly upregulated mRNA expression levels of various enzymes involved in metabolism and oxidation processes in aged rat hippocampus. In addition to its unique combination of ChE and MAO enzyme inhibition, these results indicate that ladostigil displays neuroprotective activity against oxidative stress-induced cell apoptosis, which might be valuable for aging and age-associated neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

Aβ:

beta amyloid

AChEI:

acetyl cholinesterase inhibitor

AD:

Alzheimer’s disease

APP:

amyloid precursor protein

BDNF:

brain-derived neurotrophic factor

BuChE:

butyryl cholinesterase

ChE:

cholinesterase

DEPC:

diethylpyrocarbonate

DMEM:

Dulbecco’s modified Eagle’s medium

FS:

full serum

GDNF:

glial-derived neurotrophic factor

G6PD:

glucose-6-phosphate dehydrogenase

GPx:

glutathione peroxidase

GSH-S:

glutathione synthetase

GSHPX-P:

glutathione peroxidase precursor H2O2, hydrogen peroxide

LB:

Lewy body

MAO:

monoamine oxidase

MAPK:

mitogen-activated protein kinase

MTT:

3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium

NO:

peroxinitrite donor

NQ01:

NAD(P)H quinone oxidoreductase 1

NMDA:

N-methyl-d-aspartate

O2 :

superoxide anion radical

OS:

oxidative stress

PD:

Parkinson’s disease

PKC:

protein kinase C

Prx 1:

peroxiredoxin 1

ROS:

reactive oxygen species

RT:

reverse transcription

SIN-1:

morpholinosydnonimine

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SOD:

superoxide dismutase

TDPX1:

thioredoxin peroxidase 1

References

  • Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.

    Article  PubMed  CAS  Google Scholar 

  • Ba, F., Pang, P. K. T., & Benishin, C. G. (2003). The establishment of a reliable cytotoxic system with SK–N–SH neuroblastoma cell culture. Journal of Neuroscience Methods, 123, 11–22.

    Article  PubMed  Google Scholar 

  • Bar-Am, O., Yogev-Falach, M., Amit, T., Sagi, Y., & Youdim, M. B. H. (2004). Regulation of protein kinase C by the anti-Parkinson drug, MAO-B inhibitor, rasagiline and its derivatives, in vivo. Journal of Neurochemistry, 89, 1119–1125.

    Article  PubMed  CAS  Google Scholar 

  • Bello, R. I., Gomez-Diaz, C., Navarro, F., Alcain, F. J., & Villalba, J. M. (2001). Expression of NAD(P)H:quinone oxidoreductase 1 in HeLa cells: role of hydrogen peroxide and growth phase. Journal of Biological Chemistry, 276, 44379–44384.

    Article  PubMed  CAS  Google Scholar 

  • Carrillo, M. C., Minami, C., Kitani, K., Maruyama, W., Ohashi, K., Yamamoto, T., et al. (2000). Enhancing effect of rasagiline on superoxide dismutase and catalase activities in the dopaminergic system in the rat. Life Sciences, 67, 577–585.

    Article  PubMed  CAS  Google Scholar 

  • Davenport, C. J., Monyer, H., & Choi, D. W. (1988). Tetrahydroaminoacridine selectively attenuates NMDA receptor-mediated neurotoxicity. European Journal of Pharmacology, 154, 73–78.

    Article  PubMed  CAS  Google Scholar 

  • Di Matteo, V., & Esposito, E. (2003). Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Current Drug Targets. CNS and Neurological Disorders, 2, 95–107.

    Article  PubMed  Google Scholar 

  • Dovrat, A., & Weinreb, O. (1995). Recovery of lens optics and epithelial enzymes after ultraviolet A radiation. Investigative Ophthalmology & Visual Science, 36, 2417–2424.

    CAS  Google Scholar 

  • Dragoni, S., Porcari, V., Travagli, M., Castagnolo, D., & Valoti, M. (2006). Antioxidant properties of propargylamine derivatives: assessment of their ability to scavenge peroxynitrite. Journal of Pharmacy and Pharmacology, 58, 561–565.

    Article  PubMed  CAS  Google Scholar 

  • Droge, W., & Schipper, H. M. (2007). Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell, 6, 361–370.

    Article  PubMed  CAS  Google Scholar 

  • Fahn, S., & Cohen, G. (1992). The oxidant stress hypothesis in Parkinson’s disease: Evidence supporting it. Annals of Neurology, 32, 804–812.

    Article  PubMed  CAS  Google Scholar 

  • Francis, P. T., Palmer, A. M., Snape, M., & Wilcock, G. K. (1999). The cholinergic hypothesis of Alzheimer’s disease: a review of progress. Journal of Neurology, Neurosurgery and Psychiatry, 66, 137–147.

    Article  CAS  Google Scholar 

  • Francis, P. T., Nordberg, A., & Arnold, S. E. (2005). A preclinical view of cholinesterase inhibitors in neuroprotection: Do they provide more than symptomatic benefits in Alzheimer’s disease? Trends in Pharmacological Sciences, 26, 104–111.

    Article  PubMed  CAS  Google Scholar 

  • Fridovich, I. (1995). Superoxide radical and superoxide dismutases. Annual Review of Biomedical, 64, 97–112.

    Article  CAS  Google Scholar 

  • Giacobini, E. (2002). Long-term stabilizing effect of cholinesterase inhibitors in the therapy of Alzheimer’ disease. Journal of Neural transmission. Supplementum, 181–187.

  • Giblin, F. J., & McCready, J. P. (1983). The effect of inhibition of glutathione reductase on the detoxification of H2O2 by rabbit lens. Investigative Ophthalmology & Visual Science, 24, 113–118.

    CAS  Google Scholar 

  • Godley, B. F., Jin, G. F., Guo, Y. S., & Hurst, J. S. (2002). Bcl-2 overexpression increases survival in human retinal pigment epithelial cells exposed to H(2)O(2). Experimental Eye Research, 74, 663–669.

    Article  PubMed  CAS  Google Scholar 

  • Golden, T. R., & Melov, S. (2001). Mitochondrial DNA mutations, oxidative stress, and aging. Mechanism of Ageing and Development, 122, 1577–1589.

    Article  CAS  Google Scholar 

  • Gotz, M. E., Kunig, G., Riederer, P., & Youdim, M. B. (1994). Oxidative stress: free radical production in neural degeneration. Pharmacology & Therapeutics, 63, 37–122.

    Article  CAS  Google Scholar 

  • Halliwell, B., & Aruoma, O. I. (1991). DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Letters, 281, 9–19.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, G. R., Apffel, L., Werrbach-Perez, K., & Perez-Polo, J. R. (1990). Role of nerve growth factor in oxidant–antioxidant balance and neuronal injury. I. Stimulation of hydrogen peroxide resistance. Journal of Neuroscience Research, 25, 360–368.

    Article  PubMed  CAS  Google Scholar 

  • Jenner, P. (1998). Oxidative mechanisms in nigral cell death in Parkinson’s disease. Movement Disorders, 13, 24–34.

    PubMed  Google Scholar 

  • Joseph, J. A., Shukitt-Hale, B., Casadesus, G., & Fisher, D. (2005). Oxidative stress and inflammation in brain aging: nutritional considerations. Neurochemical Research, 30, 927–935.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. H., Fountoulakis, M., Cairns, N., & Lubec, G. (2001). Protein levels of human peroxiredoxin subtypes in brains of patients with Alzheimer’s disease and Down syndrome. Journal of Neural transmission. Supplementum, 223–235.

  • Kitani, K., Kanai, S., Ivy, G. O., & Carrillo, M. C. (1999). Pharmacological modifications of endogenous antioxidant enzymes with special reference to the effects of deprenyl: A possible antioxidant strategy. Mechanism of Ageing and Development, 111, 211–221.

    Article  CAS  Google Scholar 

  • Lamb, H. M., & Goa, K. L. (2001). Rivastigmine. A pharmacoeconomic review of its use in Alzheimer’s disease. PharmacoEconomics, 19, 303–318.

    Article  PubMed  CAS  Google Scholar 

  • Liu, R. M. (2002). Down-regulation of gamma-glutamylcysteine synthetase regulatory subunit gene expression in rat brain tissue during aging. Journal of Neuroscience Research, 68, 344–351.

    Article  PubMed  CAS  Google Scholar 

  • Liu, R., & Choi, J. (2000). Age-associated decline in gamma-glutamylcysteine synthetase gene expression in rats. Free Radical Biology & Medicine, 28, 566–574.

    Article  CAS  Google Scholar 

  • Lopez, O. L., Becker, J. T., Wisniewski, S., Saxton, J., Kaufer, D. I., & DeKosky, S. T. (2002). Cholinesterase inhibitor treatment alters the natural history of Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 72, 310–314.

    Article  CAS  Google Scholar 

  • Luques, L., Shoham, S., & Weinstock, M. (2007). Chronic brain cytochrome oxidase inhibition selectively alters hippocampal cholinergic innervation and impairs memory: prevention by ladostigil. Experimental Neurology, 206, 209–219.

    Article  PubMed  CAS  Google Scholar 

  • Mamelak, M. (2007). Alzheimer’ s disease, oxidative stress and gamma hydroxybutyrate. Neurobiology of Aging, 28, 1340–1360.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama, W., Akao, Y., Youdim, M. B. H., Boulton, A. A., Davis, B. A., & Naoi, M. (2001). Transfection-enforced Bcl-2 overexpression and an anti-Parkinson drug, rasagiline, prevent nuclear accumulation of glyceraldehyde-3 phosphate dehydrogenase induced by an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol. Journal of Neurochemistry, 78, 727–735.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama, W., Weinstock, M., Youdim, M. B., Nagai, M., & Naoi, M. (2003). Anti-apoptotic action of anti-Alzheimer drug, TV3326 [(N-propargyl)-(3R)-aminoindan-5-yl]-ethyl methyl carbamate, a novel cholinesterase- monoamine oxidase inhibitor. Neuroscience Letters, 341, 233–236.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P., Lovell, M. A., Furukawa, K., & Markesbery, W. R. (1995). Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular Ca2+ concentration, and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons. Journal of Neurochemistry, 65, 1740–1751.

    PubMed  CAS  Google Scholar 

  • Multhaup, G., Ruppert, T., Schlicksupp, A., Hesse, L., Beher, D., Masters, C. L., et al. (1997). Reactive oxygen species and Alzheimer’s disease. Biochemical Pharmacology, 54, 533–539.

    Article  PubMed  CAS  Google Scholar 

  • Nicotra, A., Pierucci, F., Parvez, H., & Senatori, O. (2004). Monoamine oxidase expression during development and aging. Neurotoxicology, 25, 155–165.

    Article  PubMed  CAS  Google Scholar 

  • Nunomura, A., Perry, G., Aliev, G., Hirai, K., Takeda, A., Balraj, E. K., et al. (2001). Oxidative damage is the earliest event in Alzheimer disease. Journal of Neuropathology and Experimental Neurology, 60, 759–767.

    PubMed  CAS  Google Scholar 

  • Park, C., So, H. S., Shin, S. H., Choi, J. Y., Lee, I., Kim, J. K., et al. (2007). The water extract of Omija protects H9c2 cardiomyoblast cells from hydrogen peroxide through prevention of mitochondrial dysfunction and activation of caspases pathway. Phytotherapy Research, 21, 81–88.

    Article  PubMed  Google Scholar 

  • Racchi, M., Mazzucchelli, M., Porrello, E., Lanni, C., & Govoni, S. (2004). Acetylcholinesterase inhibitors: Novel activities of old molecules. Pharmacological Reviews, 50, 441–451.

    Article  CAS  Google Scholar 

  • Rao, G., Xia, E., & Richardson, A. (1990). Effect of age on the expression of antioxidant enzymes in male Fischer F344 rats. Mechanism of Ageing and Development, 53, 49–60.

    Article  CAS  Google Scholar 

  • Rhee, S. G. (1999). Redox signaling: hydrogen peroxide as intracellular messenger. Experimental and Molecular Medicine, 31, 53–59.

    PubMed  CAS  Google Scholar 

  • Rogers, J. T., & Lahiri, D. K. (2004). Metal and inflammatory targets for Alzheimer’s disease. Current drug targets, 5, 535–551.

    Article  PubMed  CAS  Google Scholar 

  • SantaCruz, K. S., Yazlovitskaya, E., Collins, J., Johnson, J., & DeCarli, C. (2004). Regional NAD(P)H:quinone oxidoreductase activity in Alzheimer’s disease. Neurobiology of Aging, 25, 63–69.

    Article  PubMed  CAS  Google Scholar 

  • Schallreuter, K. U., & Elwary, S. (2007). Hydrogen peroxide regulates the cholinergic signal in a concentration dependent manner. Life Sciences, 80, 2221–2226.

    Article  PubMed  CAS  Google Scholar 

  • Schliebs, R. (2005). Basal forebrain cholinergic dysfunction in Alzheimer’s disease—interrelationship with beta-amyloid, inflammation and neurotrophin signaling. Neurochemical Research, 30, 895–908.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe, D. J., & Schenk, D. (2003). Alzheimer’s disease: Molecular understanding predicts amyloid-based therapeutics. Annual Review of Pharmacology and Toxicology, 43, 545–584.

    Article  PubMed  CAS  Google Scholar 

  • Semsei, I., Rao, G., & Richardson, A. (1991). Expression of superoxide dismutase and catalase in rat brain as a function of age. Mechanism of Ageing and Development, 58, 13–19.

    Article  CAS  Google Scholar 

  • Setsukinai, K., Urano, Y., Kakinuma, K., Majima, H. J., & Nagano, T. (2003). Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. Journal of Biological Chemistry, 278, 3170–3175.

    Article  PubMed  Google Scholar 

  • Shang, Y. Z., Ye, J. W., & Tang, X. C. (1999). Improving effects of huperzine A on abnormal lipid peroxidation and superoxide dismutase in aged rats. Zhongguo Yao Li Xue Bao, 20, 824–828.

    PubMed  CAS  Google Scholar 

  • Smith, M. A., Rottkamp, C. A., Nunomura, A., Raina, A. K., & Perry, G. (2000). Oxidative stress in Alzheimer’s disease. Biochimica Et Biophysica Acta, 1502, 139–144.

    PubMed  CAS  Google Scholar 

  • Sterling, J., Herzig, Y., Goren, T., Finkelstein, N., Lerner, D., Goldenberg, W., et al. (2002). Novel dual inhibitors of AChE and MAO derived from hydroxy aminoindan and phenethylamine as potential treatment for Alzheimer’s disease. Journal of Medicinal Chemistry, 45, 5260–5279.

    Article  PubMed  CAS  Google Scholar 

  • Stringer, J. L., Gaikwad, A., Gonzales, B. N., Long Jr., D. J., Marks, L. M., & Jaiswal, A. K. (2004). Presence and induction of the enzyme NAD(P)H: quinone oxidoreductase 1 in the central nervous system. Journal of Comparative Neurology, 471, 289–297.

    Article  PubMed  CAS  Google Scholar 

  • Stone, J. R., & Yang, S. (2006). Hydrogen peroxide: a signaling messenger. Antioxidants & Redox Signalling, 8, 243–270.

    Article  CAS  Google Scholar 

  • Svensson, A. L., & Nordberg, A. (1998). Tacrine and donepezil attenuate the neurotoxic effect of A beta(25–35) in rat PC12 cells. Neuroreport, 9, 1519–1522.

    Article  PubMed  CAS  Google Scholar 

  • Takahata, K., Shimazu, S., Katsuki, H., Yoneda, F., & Akaike, A. (2006). Effects of selegiline on antioxidant systems in the nigrostriatum in rat. Journal of Neural Transmission, 113, 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Tran, V. V., Chen, G., Newgard, C. B., & Hohmeier, H. E. (2003). Discrete and complementary mechanisms of protection of beta-cells against cytokine-induced and oxidative damage achieved by bcl-2 overexpression and a cytokine selection strategy. Diabetes, 52, 1423–1432.

    Article  PubMed  CAS  Google Scholar 

  • Tyurina, Y. Y., Tyurin, V. A., Carta, G., Quinn, P. J., Schor, N. F., & Kagan, V. E. (1997). Direct evidence for antioxidant effect of Bcl-2 in PC12 rat pheochromocytoma cells. Archives of Biochemistry and Biophysics, 344, 413–423.

    Article  PubMed  CAS  Google Scholar 

  • Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-biological Interactions, 160, 1–40.

    Article  PubMed  CAS  Google Scholar 

  • Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry & Cell Biology, 39, 44–84.

    Article  CAS  Google Scholar 

  • Wadia, J. S., Chalmers-Redman, R. M. E., Ju, W. J. H., Carlile, G. W., Phillips, J. L., Fraser, A. D., et al. (1998). Mitochondrial membrane potential and nuclear changes in apoptosis caused by serum and nerve growth factor withdrawal: time course and modification by (−)-deprenyl. Journal of Neuroscience, 18, 932–947.

    PubMed  CAS  Google Scholar 

  • Weinreb, O., Bar-Am, O., Amit, T., Chillag-Talmor, O., & Youdim, M. B. H. (2004). Neuroprotection via pro-survival protein kinase C isoforms associated with Bcl-2 family members. FASEB Journal, 18, 1471–1473.

    PubMed  CAS  Google Scholar 

  • Weinreb, O., Drigues, N., Sagi, Y., Reznick, A. Z., Amit, T., & Youdim, M. B. (2007a). The application of proteomics and genomics to the study of age-related neurodegeneration and neuroprotection. Antioxidants & Redox Signalling, 9, 169–179.

    Article  CAS  Google Scholar 

  • Weinreb, O., Amit, T., Bar-Am, O., & Youdim, M. B. H. (2007b). Induction of the neurotrophic factors, GDNF and BDNF associated with the mechanism of neurorescue action of rasagiline and ladostigil: New insights and implication for therapy. Annals of the New York Academy of Sciences, 1122, 155–168.

    Article  PubMed  CAS  Google Scholar 

  • Weinstock, M., Goren, T., & Youdim, M. B. H. (2000a). Development of a novel neuroprotective drug (TV3326) for the treatment of Alzheimer’s disease, with cholinesterase and monoamine oxidase inhibitory activities. Drug Development Research, 50, 216–222.

    Article  CAS  Google Scholar 

  • Weinstock, M., Bejar, C., Wang, R. H., Poltyrev, T., Gross, A., Finberg, J., et al. (2000b). TV3326, a novel neuroprotective drug with cholinesterase and monoamine oxidase inhibitory activities for the treatment of Alzheimer’s disease. Journal of Neural Transmission, 60(Suppl), S157–S170.

    Google Scholar 

  • Weinstock, M., Kirschbaum-Slager, N., Lazarovici, P., Bejar, C., Shoami, E., & Youdim, M. B. H. (2000c). Cell culture and in vivo neuroprotective effects of novel cholinesterase-MAO inhibitors. Derived from rasagiline as potential anti-Alzheimer drugs. Annals of the New York Academy of Sciences, 939, 148–161.

    Google Scholar 

  • Weinstock, M., Kirschbaum-Slager, N., Lazarovici, P., Bejar, C., Youdim, M. B. H., & Shoham, S. (2001). Neuroprotective effects of novel cholinesterase inhibitors derived from rasagiline as potential anti-Alzheimer drugs. Annals of New York Academic Science, 939, 148–161.

    Article  CAS  Google Scholar 

  • Weinstock, M., Gorodetsky, E., Poltyrev, T., Gross, A., Sagi, Y., & Youdim, M. B. H. (2003). A novel cholinesterase and brain-selective monoamine oxidase inhibitor for the treatment of dementia comorbid with depression and Parkinson’s disease. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 27, 555–61.

    Article  CAS  Google Scholar 

  • Xiao, X. Q., Yang, J. W., & Tang, X. C. (1999). Huperzine A protects rat pheochromocytoma cells against hydrogen peroxide-induced injury. Neuroscience Letters, 275, 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, X. Q., Wang, R., & Tang, X. C. (2000). Huperzine A and tacrine attenuate beta-amyloid peptide-induced oxidative injury. Journal of Neuroscience Research, 61, 564–569.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, X. Q., Zhang, H. Y., & Tang, X. C. (2002). Huperzine A attenuates amyloid beta-peptide fragment 25–35-induced apoptosis in rat cortical neurons via inhibiting reactive oxygen species formation and caspase-3 activation. Journal of Neuroscience Research, 67, 30–36.

    Article  PubMed  CAS  Google Scholar 

  • Yang, L., He, H. Y., & Zhang, X. J. (2002). Increased expression of intranuclear AChE involved in apoptosis of SK-N-SH cells. Neuroscience Research, 42, 261–268.

    Article  PubMed  CAS  Google Scholar 

  • Yi, H., Maruyama, W., Akao, Y., Takahashi, T., Iwasa, K., Youdim, M. B., et al. (2006). N-Propargylamine protects SH-SY5Y cells from apoptosis induced by an endogenous neurotoxin, N-methyl(R)salsolinol, through stabilization of mitochondrial membrane and induction of anti-apoptotic Bcl-2. Journal of Neural Transmission, 113, 21–32.

    Article  PubMed  CAS  Google Scholar 

  • Yogev-Falach, M., Amit, T., Bar-Am, O., Sagi, Y., Weinstock, M., & Youdim, M. B. H. (2002). The involvement of mitogen-activated protein (MAP) kinase in the regulation of amyloid precursor protein processing by novel cholinesterase inhibitors derived from rasagiline. FASEB Journal, 16, 1674–1676.

    PubMed  CAS  Google Scholar 

  • Yogev-Falach, M., Amit, T., Bar-Am, O., & Youdim, M. B. H. (2003). The importance of propargylamine moiety in the anti-Parkinson drug rasagiline and its derivatives for MAPK-dependent amyloid precursor protein processing. FASEB Journal, 17, 2325–2327.

    PubMed  CAS  Google Scholar 

  • Yogev-Falach, M., Bar-Am, O., Amit, T., Weinreb, O., & Youdim, M. B. (2006). A multifunctional, neuroprotective drug, ladostigil (TV3326), regulates holo-APP translation and processing. Faseb Journal, 20, 2177–2179.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa, A., Saito, Y., & Maruyama, K. (2006). Lignan compounds and 4,4¢-dihydroxybiphenyl protect C2C12 cells against damage from oxidative stress. Biochemical and Biophysical Perspectives in Marine Biology, 344, 394–399.

    CAS  Google Scholar 

  • Youdim, M. B. H. (2003). Rasagiline: an anti-Parkinson drug with neuroprotective activity. Future Drugs, 3, 737–749.

    CAS  Google Scholar 

  • Youdim, M. B., & Weinstock, M. (2001). Molecular basis of neuroprotective activities of rasagiline and the anti-Alzheimer drug TV3326 [(N-propargyl-(3R)aminoindan-5-YL)-ethyl methyl carbamate]. Cellular and Molecular Neurobiology, 21, 555–573.

    Article  PubMed  CAS  Google Scholar 

  • Youdim, M. B. H., Wadia, A., Tatton, N. A., & Weinstock, M. (2001). The anti-Parkinson drug rasagiline and its cholinesterase inhibitor derivatives exert neuroprotection unrelated to MAO inhibition in cell culture and in vivo. Annals of the New York Academy of Sciences, 939, 450–458.

    PubMed  CAS  Google Scholar 

  • Zafar, K. S., Inayat-Hussain, S. H., Siegel, D., Bao, A., Shieh, B., & Ross, D. (2006). Overexpression of NQO1 protects human SK-N-MC neuroblastoma cells against dopamine-induced cell death. Toxicology Letters, 166, 261–267.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Yu, H., Sun, Y., Lin, X., Chen, B., Tan, C., et al. (2007a). Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells. European Journal of Pharmacology, 564, 18–25.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H. Y., Yan, H., & Tang, X. C. (2007b). Non-cholinergic effects of huperzine A: Beyond inhibition of acetylcholinesterase. Cellular and Molecular Neurobiology, 28, 173–183.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Y., Carvey, P. M., & Ling, Z. (2006). Age-related changes in glutathione and glutathione-related enzymes in rat brain. Brain Research, 1090, 35–44.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Teva Pharmaceutical Co. (Netanya, Israel) and National Parkinson Foundation (Miami, FL, USA) and Stein Foundation and Friedman Foundations (Philadelphia, PA, USA) for their support of this work and to Smoler Proteomic Center, Department of Biology, Technion-Israel Institute of Technology for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moussa B. H. Youdim.

Additional information

Orit Bar-Am, Orly Weinreb, and Tamar Amit share equal recognition.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bar-Am, O., Weinreb, O., Amit, T. et al. The Novel Cholinesterase–Monoamine Oxidase Inhibitor and Antioxidant, Ladostigil, Confers Neuroprotection in Neuroblastoma Cells and Aged Rats. J Mol Neurosci 37, 135–145 (2009). https://doi.org/10.1007/s12031-008-9139-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9139-6

Keywords

Navigation