Skip to main content
Log in

Transient Receptor Potential Melastatin 2 Expression is Increased Following Experimental Traumatic Brain Injury in Rats

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) elicits a sequence of complex biochemical changes including oxidative stress, oedema, inflammation and excitotoxicity. These factors contribute to the high morbidity and mortality following TBI, although their underlying molecular mechanisms remain poorly understood. Transient receptor potential melastatin 2 (TRPM2) is a non-selective cation channel, highly expressed in the brain and immune cells. Recent studies have implicated TRPM2 channels in processes involving oxidative stress, inflammation and cell death. However, no studies have investigated the role of TRPM2 in TBI pathophysiology. In the present study, we have characterised TRPM2 mRNA and protein expression following experimental TBI. Adult male Sprague Dawley rats were injured using the impact-acceleration model of diffuse TBI with survival times between 5 and 5 days. Real-time RT-PCR (including reference gene validation studies) and semi-quantitative immunohistochemistry were used to quantify TRPM2 mRNA and protein levels, respectively, following TBI. Significant increases in TRPM2 mRNA and protein expression were observed in the cerebral cortex and hippocampus of injured animals, suggesting that TRPM2 may contribute to TBI injury processes such as oxidative stress, inflammation and neuronal death. Further characterisation of how TRPM2 may contribute to TBI pathophysiology is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Aarts M, Iihara K, Wei W-L et al (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877

    Article  CAS  PubMed  Google Scholar 

  • Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev 3:205–214

    CAS  Google Scholar 

  • Baskaya MK, Rao AM, Dogan A, Donaldson D, Dempsey RJ (1997) The biphasic opening of the blood-brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett 226:33–36

    Article  CAS  PubMed  Google Scholar 

  • Bigler ED, Andersob CV, Blatter DD (2002) Temporal lobe morphology in normal aging and traumatic brain injury. Am J Neuroradiol 23:255–266

    PubMed  Google Scholar 

  • Bruns J Jr, Hauser WA (2003) The epidemiology of traumatic brain injury: a review. Epilepsia 44(Suppl 10):2–10

    Article  PubMed  Google Scholar 

  • Cappelli K, Felicetti M, Capomaccio S, Spinsanti G, Silvestrelli M, Supplizi AV (2008) Exercise induced stress in horses: selection of the most stable reference genes for quantitative RT-PCR normalization. BMC Mol Biol 9(49)

  • Chong ZZ, Li F, Maiese K (2005) Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol 75:207–246

    Article  CAS  PubMed  Google Scholar 

  • Cook N, Van Den Heuvel C, Donkin J, Vink R (2009) Validation of reference genes for normalization of real-time quantitative RT-PCR data in traumatic brain injury. J Neurosci Res 87:34–41

    Article  CAS  PubMed  Google Scholar 

  • Cormio M, Robertson CS, Narayan RK (1997) Secondary insults to the injured brain. J Clin Neurosci 4(2):132–148

    Article  CAS  PubMed  Google Scholar 

  • Dheda K, Huggett JF, Chang JS et al (2005) The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem 344:141–143

    Article  CAS  PubMed  Google Scholar 

  • Donkin JJ, Nimmo AJ, Cernak I, Blumbergs PC, Vink R (2009) Substance P is associated with the development of brain edema and functional deficits after traumatic brain injury. J Cereb Blood Flow Metab 13 May 2009: 1-11

  • Fleig A, Penner R (2004) The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci 25(12):633–639

    Article  CAS  PubMed  Google Scholar 

  • Foda MAA, Marmarou A (1994) A new model of diffuse brain injury in rats. Part II: morphological characterization. J Neurosurg 80:301–313

    Article  CAS  PubMed  Google Scholar 

  • Fonfria E, Marshall ICB, Boyfield I et al (2005) Amyloid β-peptide(1-42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures. J Neurochem 95:715–723

    Article  CAS  PubMed  Google Scholar 

  • Fonfria E, Mattei C, Hill K et al (2006) TRPM2 is elevated in the tMCAO stroke model, transcriptionally regulated, and functionally expressed in C13 microglia. J Recept Signal Transduct 26:179–198

    Article  CAS  Google Scholar 

  • Gentile NT, McIntosh TK (1993) Antagonists of excitatory amino acids and endogenous opioid peptides in the treatment of experimental central nervous system injury. Ann Emerg Med 22(6):1028–1034

    Article  CAS  PubMed  Google Scholar 

  • Golding EM (2002) Sequelae following traumatic brain injury: the cerebrovascular perspective. Brain Res Rev 38:377–388

    Article  PubMed  Google Scholar 

  • Hara Y, Wakamori M, Ishii M et al (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Molecular Cell 9:163–173

    Article  CAS  PubMed  Google Scholar 

  • Heiner I, Eisfeld J, Warnstedt M, Radukina N, Jüngling E, Lückhoff A (2006) Endogenous ADP-ribose enables calcium-regulated cation currents through TRPM2 channels in neutrophil granulocytes. Biochem J 398:225–232

    Article  CAS  PubMed  Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biology 8(R19)

  • Heo JH, Han SW, Lee SK (2005) Free radicals as triggers of brain edema formation after stroke. Free Radic Biol Med 39:51–70

    Article  CAS  PubMed  Google Scholar 

  • Hermosura MC, Cui AM, Go RCV et al (2008) Altered functional properties of a TRPM2 variant in Guamanian ALS and PD. Proc Natl Acad Sci USA 105(46):18029–18034

    Article  CAS  PubMed  Google Scholar 

  • Kaneko S, Kawakami S, Hara Y et al (2006) A critical role of TRPM2 in neuronal cell death by hydrogen peroxide. Journal of the Pharmacological Sciences 101:66–76

    Article  CAS  Google Scholar 

  • Kraft R, Grimm C, Grosse K et al (2004) Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol, Cell Physiol 286:C129–C137

    Article  CAS  PubMed  Google Scholar 

  • Kühn FJP, Heiner I, Lückhoff A (2005) TRPM2: a calcium influx pathway regulated by oxidative stress and the novel second messenger ADP-ribose. Pflugers Archives-Eur J Pharmacol 451:212–219

    Article  Google Scholar 

  • Lange I, Penner R, Fleig A, Beck A (2008) Synergistic regulation of endogenous TRPM2 channels by adenine dinucleotides in primary human neutrophils. Cell Calcium 44:604–615

    Article  CAS  PubMed  Google Scholar 

  • Marmarou A, Foda MAA, Van Den Brink W, Campbell J, Kita H, Demetriadou K (1994) A new model of diffuse brain injury in rats. Part I: pathophysiology and biomechanics. J Neurosurg 80:291–300

    Article  CAS  PubMed  Google Scholar 

  • McHugh D, Flemming R, Xu S-Z, Perraud A-L, Beech DJ (2003) Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J Biol Chem 278(13):11002–11006

    Article  CAS  PubMed  Google Scholar 

  • Morales DM, Marklund N, Lebold D et al (2005) Experimental models of traumatic brain injury: do we really need to build a better mousetrap? Neuroscience 136:971–989

    Article  CAS  PubMed  Google Scholar 

  • Morganti-Kossmann MC, Satgunaseelan L, Bye N, Kossmann T (2007) Modulation of immune response by head injury. Injury 38:1392–1400

    Article  PubMed  Google Scholar 

  • Nagamine K, Kudoh J, Minoshima S, Kawasaki K, Asakawa S, Ito F, Shimizu N (1998) Molecular cloning of a novel putative Ca2+ channel protein (TRPC7) highly expressed in brain. Genomics 54:124–131

    Article  CAS  PubMed  Google Scholar 

  • Olah ME, Jackson MF, Li H et al (2009) Ca2+-dependent induction of TRPM2 currents in hippocampal neurons. J Physiol 587(5):965–979

    Article  CAS  PubMed  Google Scholar 

  • Pedersen SF, Owsianik G, Nilius B (2005) TRP channels: an overview. Cell Calcium 38:233–252

    Article  CAS  PubMed  Google Scholar 

  • Perez R, Tupac-Yupanqui I, Dunner S (2008) Evaluation of suitable reference genes for gene expression studies in bovine muscular tissue. BMC Mol Biol 9(79)

  • Perraud A-L, Fleig A, Dunn CA et al (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599

    Article  CAS  PubMed  Google Scholar 

  • Perraud A-L, Knowles HM, Schmitz C (2004) Novel aspects of signaling and ion-homeostasis regulation in immunocytes—the TRPM ion channels and their potential role in modulating the immune response. Mol Immunol 41:657–673

    Article  CAS  PubMed  Google Scholar 

  • Roth P, Farls K (2000) Pathophysiology of traumatic brain injury. Crit Care Nurs Q 23(3):14–25

    CAS  PubMed  Google Scholar 

  • Ruifrok AC, Johnston DA (2001) Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol 23:291–299

    CAS  PubMed  Google Scholar 

  • Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, Matsushime H, Furuichi K (2001) Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293:1327–1330

    Article  CAS  PubMed  Google Scholar 

  • Schroeder A, Mueller O, Stocker S et al (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7(3)

  • Starkus J, Beck A, Fleig A, Penner R (2007) Regulation of TRPM2 by extra- and intracellular calcium. J Gen Physiol 130(4):427–440

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3(7): research0034.0031-0034.0011

  • Vink R, Nimmo AJ (2009) Multifunctional drugs for head injury. Neurotherapeutics 6(1):28–42

    Article  CAS  PubMed  Google Scholar 

  • Wehage E, Eisfeld J, Heiner I, Jüngling E, Zitt C, Lückhoff A (2002) Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. J Biol Chem 277(26):23150–23156

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Li PP, Cooke RG, Parikh SV, Wang K-S, Kennedy JL, Warsh JJ (2009) TRPM2 variants and bipolar disorder risk: confirmation in a family-based association study. Bipolar Disorders 11:1–10

    Article  PubMed  Google Scholar 

  • Yamamoto S, Shimizu N, Kiyonaka S et al (2008) TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med 14(7):738–747

    Article  CAS  PubMed  Google Scholar 

  • Yang X-R, Lin M-J, McIntosh LS, Sham JSK (2006) Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol, Lung Cell Mol Physiol 290:L1267–L1276

    Article  CAS  Google Scholar 

  • Zhang W, Chu X, Tong Q, Cheung JY, Conrad K, Masker K, Miller BA (2003) A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death. J Biol Chem 278(18):16222–16229

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Naomi Cook is a grateful recipient of a postgraduate scholarship from the National Health and Medical Research Council of Australia.

We thank Emma Thornton and Justin Mencel for technical assistance.

The authors declare no financial conflict of interest relating to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinna van den Heuvel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, N.L., Vink, R., Helps, S.C. et al. Transient Receptor Potential Melastatin 2 Expression is Increased Following Experimental Traumatic Brain Injury in Rats. J Mol Neurosci 42, 192–199 (2010). https://doi.org/10.1007/s12031-010-9347-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-010-9347-8

Keywords

Navigation