Skip to main content

Advertisement

Log in

PACAP Improves Functional Outcome in Excitotoxic Retinal Lesion: An Electroretinographic Study

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors occur throughout the nervous system, including the retina. PACAP exerts diverse actions in the eye: it influences ocular blood flow, contraction of the ciliary muscle, and has retinoprotective effects. This has been proven in different models of retinal degeneration. The in vivo protective effects of PACAP have been shown in retinal degeneration induced by kainic acid, optic nerve transection and ischemia. We have previously shown by morphological, morphometrical and immunohistochemical analyses that intravitreal PACAP administration protects against monosodium glutamate (MSG)-induced damage in neonatal rats. The question was raised whether these apparent morphological improvements by PACAP administration also lead to functional amelioration in MSG-induced retinal damage. The aim of the present study was to investigate the functional consequences of MSG treatment and the subsequent PACAP administration using electroretinographic measurements. The histological and morphometrical analyses supported the earlier findings that PACAP protected the retina in MSG-induced excitotoxicity. ERG recordings revealed a marked decrease in both the b- and a-wave values, reflecting the function of the inner retinal layers and the photoreceptors, respectively. In retinas receiving intravitreal PACAP treatment, these values were significantly increased. Thus, the functional outcome, although not parallel with the morphology, was significantly improved after PACAP treatment. The present observations are important from the clinical point of view showing, for the first time, that PACAP treatment is able to improve the functional properties of the retina in excitotoxic damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Atlasz T, Babai N, Kiss P et al (2007) Pituitary adenylate cyclase activating polypeptide is protective in bilateral carotid occlusion-induced retinal lesion in rats. Gen Comp Endocrinol 153:108–114

    Article  CAS  PubMed  Google Scholar 

  • Atlasz T, Szabadfi K, Kiss P et al (2008) PACAP-mediated neuroprotection of neurochemically identified cell types in MSG-induced retinal degeneration. J Mol Neurosci 36:97–104

    Article  CAS  PubMed  Google Scholar 

  • Atlasz T, Szabadfi K, Reglodi D et al (2009) Effects of pituitary adenylate cyclase activating polypeptide and its fragments on retinal degeneration induced by neonatal monosodium glutamate treatment. Ann NY Acad Sci 1163:348–352

    Article  CAS  PubMed  Google Scholar 

  • Atlasz T, Szabadfi K, Kiss P et al (2010a) Evaluation of the protective effects of PACAP with cell-specific markers in ischemia-induced retinal degeneration. Brain Res Bull 81:497–504

    Article  CAS  PubMed  Google Scholar 

  • Atlasz T, Szabadfi K, Kiss P et al (2010b) Review of pituitary adenylate cyclase activating polypeptide in the retina: focus on the retinoprotective effects. Ann NY Acad Sci (in press)

  • Babai N, Atlasz T, Tamas A et al (2005) Degree of damage compensation by various PACAP treatments in monosodium glutamate-induced retinal degeneration. Neurotox Res 8:227–233

    Article  CAS  PubMed  Google Scholar 

  • Babai N, Atlasz T, Tamas A et al (2006) Search for the optimal monosodium glutamate treatment schedule to study the neuroprotective effects of PACAP in the retina. Ann NY Acad Sci 1070:149–155

    Article  CAS  PubMed  Google Scholar 

  • Barnett NL, Osborne NN (1995) Prolonged bilateral carotid artery occlusion induces electrophysiological and immunohistochemical changes to the rat retina without causing histological damage. Exp Eye Res 61:83–90

    Article  CAS  PubMed  Google Scholar 

  • Block F, Schwarz M (1998) The b-wave of the electroretinogram as an index of retinal ischemia. Gen Pharmacol 30:281–287

    CAS  PubMed  Google Scholar 

  • Block F, Schwarz M, Sontag KH (1992) Retinal ischemia induced by occlusion of both common carotid arteries in rats as demonstrated by electroretinography. Neurosci Lett 144:124–126

    Article  CAS  PubMed  Google Scholar 

  • Brandstätter JH, Koulen P, Wässle H (1998) Diversity of glutamate receptors in the mammalian retina. Vis Res 38:1385–1397

    Article  PubMed  Google Scholar 

  • Bui BV, Edmunds B, Cioffi GA, Fortune B (2005) The gradient of retinal functional changes during acute intraocular pressure elevation. Invest Ophthalmol Vis Sci 46:202–213

    Article  PubMed  Google Scholar 

  • Carozzi VA, Canta A, Oggioni N et al (2008) Expression and distribution of 'high affinity' glutamate transporters GLT1, GLAST, EAAC1 and of GCPII in the rat peripheral nervous system. J Anat 213:539–546

    PubMed  Google Scholar 

  • Chambille I, Serviere J (1993) Neurotoxic effects of neonatal injections of monosodium L-glutamate (L-MSG) on the retinal ganglion cell layer of the golden hamster: anatomical and functional consequences on the circadian system. J Comp Neurol 338:67–82

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Olney JW, Lukasiewicz PD, Almli T, Romano C (1998) Fenamates protect against ischemic and excitotoxic injury in chick embryo retina. Neurosci Lett 242:163–166

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Yu M, Wang Y et al (2009) Non-mitogenic human acidic fibroblast growth factor reduces retinal degeneration induced by sodium iodate. J Ocul Pharmacol Ther 25:315–320

    Article  CAS  PubMed  Google Scholar 

  • Danysz W, Parsons CG (2002) Neuroprotective potential of ionotropic glutamate receptor antagonists. Neurotox Res 4:119–126

    Article  CAS  PubMed  Google Scholar 

  • Ehinger B, Ottersen OP, Storm-Mathisen J, Dowling JE (1988) Bipolar cells in the turtle retina are strongly immunoreactive for glutamate. Proc Natl Acad Sci USA 85:8321–8325

    Article  CAS  PubMed  Google Scholar 

  • Gehlbach PL, Purple RL (1994) A paired comparison of two models of experimental retinal ischemia. Curr Eye Res 13:597–602

    Article  CAS  PubMed  Google Scholar 

  • Gurevich L, Slaughter MM (1993) Comparison of the waveforms of the ON bipolar neuron and the b-wave of the electroretinogram. Vis Res 33:2431–2435

    Article  CAS  PubMed  Google Scholar 

  • Hamassaki-Britto DE, Hermans-Borgmeyer I, Heinemann S, Hughes TE (1993) Expression of glutamate receptor genes in the mammalian retina: the localization of GluR1 through GluR7 mRNAs. J Neurosci 13:1888–1898

    CAS  PubMed  Google Scholar 

  • Hare WA, Owen WG (1992) Effects of 2-amino-4-phosphonobutyric acid on cells in the distal layers of the tiger salamander's retina. J Physiol 445:741–757

    CAS  PubMed  Google Scholar 

  • Jehle T, Wingert K, Dimiriu C (2008) Quantification of ischemic damage in the rat retina: a comparative study using evoked potentials, electroretinography, and histology. Invest Ophthalmol Vis Sci 49:1056–1064

    Article  PubMed  Google Scholar 

  • Kiss P, Tamas A, Lubics A et al (2006) Effects of systemic PACAP treatment in monosodium glutamate-induced behavioral changes and retinal degeneration. Ann NY Acad Sci 1070:365–370

    Article  CAS  PubMed  Google Scholar 

  • Müller F, Greferath U, Wässle H, Wisden W, Seeburg P (1992) Glutamate receptor expression in the rat retina. Neurosci Lett 138:179–182

    Article  PubMed  Google Scholar 

  • North RV, Jones AL, Drasdo N, Wild JM, Morgan JE (2010) Electrophysiological evidence of early functional damage in glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 51:1216–1222

    Article  PubMed  Google Scholar 

  • Osborne NN, Casson RJ, Wood JP, Chidlow G, Graham M, Melena J (2004) Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 23:91–147

    Article  CAS  PubMed  Google Scholar 

  • Osborne NN, Larsen A, Barnett NL (1995) Influence of excitatory amino acids and ischemia on rat retinal choline acetyltransferase-containing cells. Invest Ophthalmol Vis Sci 36:1692–1700

    CAS  PubMed  Google Scholar 

  • Pedersen V, Schmidt WJ (2000) The neuroprotectant properties of glutamate antagonists and antiglutamatergic drugs. Neurotox Res 2:179–204

    Article  CAS  PubMed  Google Scholar 

  • Potts AM, Modrell RW, Kingsbury C (1960) Permanent fractionation of the electroretinogram by sodium glutamate. Am J Ophthalmol 50:900–907

    CAS  PubMed  Google Scholar 

  • Racz B, Gallyas F Jr, Kiss P et al (2006a) The neuroprotective effects of PACAP in monosodium glutamate-induced retinal lesion involve inhibition of proapoptotic signaling pathways. Regul Pept 137:20–26

    Article  CAS  PubMed  Google Scholar 

  • Racz B, Tamas A, Kiss P et al (2006b) Involvement of ERK and CREB signaling pathways in the protective effect of PACAP in monosodium glutamate-induced retinal lesion. Ann NY Acad Sci 1070:507–511

    Article  CAS  PubMed  Google Scholar 

  • Racz B, Gallyas F Jr, Kiss P et al (2007) Effects of pituitary adenylate cyclase activating polypeptide (PACAP) on the PKA-Bad-14-3-3 signaling pathway in glutamate-induced retinal injury in neonatal rats. Neurotox Res 12:95–104

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum DM, Rosenbaum PS, Singh M et al (2001) Functional and morphologic comparison of two methods to produce transient retinal ischemia in the rat. J Neuroophthalmol 21:62–68

    CAS  PubMed  Google Scholar 

  • Sarantis M, Everett K, Attwell D (1988) A presynaptic action of glutamate at the cone output synapse. Nature 332:451–453

    Article  CAS  PubMed  Google Scholar 

  • Seki T, Izumi S, Shioda S, Zhou CJ, Arimura A, Koide R (2000) Gene expression for PACAP receptor mRNA in the rat retina by in situ hybridization and in situ RT-PCR. Ann NY Acad Sci 921:366–369

    Article  CAS  PubMed  Google Scholar 

  • Seki T, Itoh H, Nakamachi T, Shioda S (2008) Suppression of ganglion cell death by PACAP following optic nerve transection in the rat. J Mol Neurosci 36:57–60

    Article  CAS  PubMed  Google Scholar 

  • Seki T, Nakatani M, Taki C et al (2006) Neuroprotective effect of PACAP against kainic acid-induced neurotoxicity in rat retina. Ann NY Acad Sci 1070:531–534

    Article  CAS  PubMed  Google Scholar 

  • Smythies J (1999) The neurotoxicity of glutamate, dopamine, iron and reactive oxygen species: functional interrelationships in health and disease: a review-discussion. Neurotox Res 1:27–39

    Article  CAS  PubMed  Google Scholar 

  • Soudry S, Zemei E, Loewenstein A, Perlman I (2009) The developing mammalian retina is partially protected from gentamicin toxicity. Exp Eye Res 88:1152–1160

    Article  CAS  PubMed  Google Scholar 

  • Sucher NJ, Lipton SA, Dreyer EB (1997) Molecular basis of glutamate toxicity in retinal ganglion cells. Vis Res 37:3483–3493

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Bui BV, Vingrys AJ, Kalloniatis M (2007) Alterations in photoreceptor-bipolar cell signaling following ischemia-reperfusion in the rat retina. J Comp Neurol 505:131–146

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Ooi VE, Chan SO (2001) N-methyl-D-aspartate-induced excitotoxicity in adult rat retina is antagonized by single systemic injection of MK-801. Exp Brain Res 138:37–45

    Article  CAS  PubMed  Google Scholar 

  • Tamas A, Gabriel R, Racz B et al (2004) Effects of pituitary adenylate cyclase activating polypeptide in retinal degeneration induced by monosodium-glutamate. Neurosci Lett 372:110–113

    Article  CAS  PubMed  Google Scholar 

  • Tanito M, Kaidzu S, Anderson RE (2007) Delayed loss of cone and remaining rod photoreceptor cells due to impairment of choroidal circulation after acute light exposure in rats. Invest Ophthalmol Vis Sci 48:1864–4872

    Article  PubMed  Google Scholar 

  • Toriu N, Akaike A, Yasuyoshi H et al (2000) Lomerizine, a Ca2+ channel blocker, reduces glutamate-induced neurotoxicity and ischemia/reperfusion damage in rat retina. Exp Eye Res 70:475–484

    Article  CAS  PubMed  Google Scholar 

  • Vidal-Sanz M, Lafuente M, Sobrado-Calvo P et al (2000) Death and neuroprotection of retinal ganglion cells after different types of injury. Neurotox Res 2:215–227

    Article  CAS  PubMed  Google Scholar 

  • Wen R, Song Y, Kjellstrom S et al (2006) Regulation of rod phototransduction machinery by ciliary neurotrophic factor. J Neurosci 26:13523–13530

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hungarian Scientific Research Fund OTKA K72592, F67830, CNK 78480, T061766, 78233, K72315, ETT278-04/2009, Richter Gedeon Foundation, Bolyai Scholarship, TAMOP-4.2.2-08/1-2008-2007 and 4.2.1.B-2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dora Reglodi.

Additional information

Varga B and Szabadfi K as well as Atlasz T and Juhasz B contributed equally to the present work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varga, B., Szabadfi, K., Kiss, P. et al. PACAP Improves Functional Outcome in Excitotoxic Retinal Lesion: An Electroretinographic Study. J Mol Neurosci 43, 44–50 (2011). https://doi.org/10.1007/s12031-010-9406-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-010-9406-1

Keywords

Navigation