Skip to main content
Log in

Differential Roles of PKA and Epac on the Production of Cytokines in the Endotoxin-Stimulated Primary Cultured Microglia

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

To further understand the anti-inflammatory effect of adenosine cyclic 3′,5′-monophosphate (cAMP), we examined the effect of protein kinase A (PKA) and cAMP-responsive guanine nucleotide exchange factor (Epac) on the transcription and production of cytokines and on the activity of mitogen-activated protein kinases (MAPK) p38 and glycogen synthase kinase-3β (GSK-3β) in endotoxin-treated rat primary cultured microglia. The PKA specific agonist N6-benzoyladenosine-3,5-cAMP (6-Bnz-cAMP) not only inhibited the transcription and production of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) but also enhanced the transcription and expression of IL-10, while the Epac selective analog 8-(4-chlorophenylthio)-2-O-methyladenosine-3,5-cAMP (8-pCPT-2′-O-Me-cAMP) merely repressed the TNF-α expression. Western blots assays indicated that 6-Bnz-cAMP significantly inhibited lipopolysaccharide-induced activation of both p38 and GSK-3β in a dose-dependent manner; in contrast, 8-pCPT-2′-O-Me-cAMP only slightly repressed GSK-3β activity at large doses. Pretreatment with H-89, a specific PKA antagonist, could completely reverse the effect of 6-Bnz-cAMP on cytokines expressions and kinases activities but had no effect on the performance of 8-pCPT-2′-O-Me-cAMP. Our findings indicate that PKA and Epac exert differential effect on the expression of inflammatory cytokines such as TNF-α, IL-1β, and IL-10, possibly owing to the different effects on the downstream effectors, MAPK p38, and GSK-3β.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aloisi F (2001) Immune function of microglia. Glia 36:165–179

    Article  PubMed  CAS  Google Scholar 

  • Aronoff DM, Canetti C, Serezani CH, Luo M, Peters-Golden M (2005) Cutting edge: macrophage inhibition by cyclic AMP (cAMP): differential roles of protein kinase A and exchange protein directly activated by cAMP-1. J Immunol 174:595–599

    PubMed  CAS  Google Scholar 

  • Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60:430–440

    Article  PubMed  CAS  Google Scholar 

  • Bhat NR, Zhang P, Lee JC, Hogan EL (1998) Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J Neurosci 18:1633–1641

    PubMed  CAS  Google Scholar 

  • Bos JL (2003) Epac: a new cAMP target and new avenues in cAMP research. Nat Rev Mol Cell Biol 4:733–738

    Article  PubMed  CAS  Google Scholar 

  • Cheng YL, Wang CY, Huang WC et al (2009) Staphylococcus aureus induces microglial inflammation via a glycogen synthase kinase 3beta-regulated pathway. Infect Immun 77:4002–4008

    Article  PubMed  CAS  Google Scholar 

  • Dugo L, Collin M, Thiemermann C (2007) Glycogen synthase kinase 3beta as a target for the therapy of shock and inflammation. Shock 27:113–123

    Article  PubMed  CAS  Google Scholar 

  • Enserink JM, Christensen AE, de Rooij J et al (2001) A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat Cell Biol 4:901–906

    Article  Google Scholar 

  • Garden GA, Möller T (2006) Microglia biology in health and disease. J Neuroimmune Pharmacol 1:127–137

    Article  PubMed  Google Scholar 

  • Huang WC, LinYS WCY et al (2009) Glycogen synthase kinase-3 negatively regulates anti-inflammatory interleukin-10 for lipopolysaccharide-induced iNOS/NO biosynthesis and RANTES production in microglial cells. Immunology 128:e275–e286

    Article  PubMed  Google Scholar 

  • Jing H, Yen JH, Ganea D (2004) A novel signaling pathway mediates the inhibition of CCL3/4 expression by prostaglandin E2. J Biol Chem 279:55176–55186

    Article  PubMed  CAS  Google Scholar 

  • Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869

    PubMed  CAS  Google Scholar 

  • Lee H, Suk K (2004) Selective modulation of microglial signal transduction by PACAP. NeuroReport 15:1469–1474

    Article  PubMed  CAS  Google Scholar 

  • Lucin KM, Wyss-Coray T (2009) Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 64:110–122

    Article  PubMed  CAS  Google Scholar 

  • Miller G (2005) Neuroscience. The dark side of glia. Science 308:778–781

    Article  PubMed  CAS  Google Scholar 

  • Moon EY, Oh SY, Han GH, Lee CS, Park SK (2005) Epac1-mediated Rap1 activation is not required for the production of nitric oxide in BV2, murine microglial cells. J Neurosci Res 81:38–44

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Si QS, Kataoka K (1999) Lipopolysaccharide-induced microglial activation in culture: temporal profiles of morphological change and release of cytokines and nitric oxide. Neurosci Res 35:95–100

    Article  PubMed  CAS  Google Scholar 

  • Petrova TV, Akama KT, Van Eldik LJ (1999) Selective modulation of BV2 microglial activation by prostaglandin E2. Differential effects on endotoxin-stimulated cytokine induction. J Biol Chem 274:28823–28827

    Article  PubMed  CAS  Google Scholar 

  • Woo MS, Jang PG, Park JS, Kim WK, Joh TH, Kim HS (2003) Selective modulation of lipopolysaccharide-stimulated cytokine expression and mitogen-activated protein kinase pathways by dibutytyl-cAMP in BV2 microglial cells. Mol Brain Res 113:86–96

    Article  PubMed  CAS  Google Scholar 

  • Woo MS, Jung SH, Hyun JW, Kim HS (2004) Differential regulation of inducible nitric oxide synthase and cytokine gene expression by forskolin and dibutyryl-cAMP in lipopolysaccharide-stimulated murine BV2 microglial cells. Neurosci Lett 356:187–190

    Article  PubMed  CAS  Google Scholar 

  • Xue Y, Wang Y, Feng DC, Xiao BG, Xu LY (2008) Tetrandrine suppresses lipopolysaccharide induced microglial activation by inhibiting NF-kappaB pathway. Acta Pharmacol Sin 29:245–251

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa M, Suzumura A, Tamaru T, Takayanagi T, Sawada M (1999) Effects of phosphodiesterase inhibitors on cytokine production by microglia. Mult Scler 5:126–133

    PubMed  CAS  Google Scholar 

  • Zhang B, Yang L, Konishi Y, Maeda N, Sakanaka M, Tanaka J (2002) Suppressive effects of phosphodiesterase type IV inhibitors in rat cultured microglial cells: comparison with other types of cAMP elevating agents. Neuropharmacology 42:262–269

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Bui TN, Xiang J, Lin A (2006) Cyclic AMP inhibits p38 activation via CREB-induced dynein light chain. Mol Cell Biol 26:1223–1234

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (30600583 and 30901399) and National Postdoctoral Science Foundation of China (20080440625). We thank Dr. Yanxia Wang and Yong Li for assistance in microglia culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buwei Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Zhao, X., Cao, J. et al. Differential Roles of PKA and Epac on the Production of Cytokines in the Endotoxin-Stimulated Primary Cultured Microglia. J Mol Neurosci 45, 186–193 (2011). https://doi.org/10.1007/s12031-010-9426-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-010-9426-x

Keywords

Navigation