Skip to main content

Advertisement

Log in

Curcumin has Neuroprotection Effect on Homocysteine Rat Model of Parkinson

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a progressive neurological disorder which is emanated by dopaminergic death cell and depletion. Curcumin as a nontoxic matter has antioxidant, anti-inflammatory, and antiproliferative activities, and it involves antioxidant property same to vitamins C and E. In this study, we investigated the neuroprotective properties of the natural polyphenolic antioxidant compound, curcumin, against homocysteine (Hcy) neurotoxicity. Curcumin (50 mg/kg) was injected intraperitoneally (i.p.) once daily for a period of 10 days beginning 5 days prior to Hcy (2 μmol/μl) intracerebroventricular (i.c.v.) injection in rats. The studies included immunohistological and locomotor activity tests. These results suggest that homocysteine intracerebroventricular administration (2 μmol/μl i.c.v.) may induce changes in rat brain, and subsequently, polyphenol treatment curcumin 50 mg/kg (i.p.) was capable in improving locomotor function in insulted animal by protecting the nervous system against homocysteine toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aggarwal BB, Sung B (2009) Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci 30(2):85–94

    Article  PubMed  CAS  Google Scholar 

  • Algaidi SA, Christie LA, Jenkinson AM, Whalley L, Riedel G, Platt B (2006) Long-term homocysteine exposure induces alterations in spatial learning, hippocampal signalling and synaptic plasticity. Exp Neurol 197(1):8–21

    Article  PubMed  CAS  Google Scholar 

  • Ataie A, Sabetkasaei M, Haghparast A, Moghaddam AH, Kazeminejad B (2010) Neuroprotective effects of the polyphenolic antioxidant agent, curcumin, against homocysteine-induced cognitive impairment and oxidative stress in the rat. Pharmacol Biochem Behav 96(4):378–385

    Article  PubMed  CAS  Google Scholar 

  • Baydas G, Reiter RJ, Akbulut M, Tuzcu M, Tamer S (2005) Melatonin inhibits neural apoptosis induced by homocysteine in hippocampus of rats via inhibition of cytochrome c translocation and caspase-3 activation and by regulating pro- and anti-apoptotic protein levels. Neuroscience 135(3):879–886

    Article  PubMed  CAS  Google Scholar 

  • Deveraux QL, Schendel SL, Reed JC (2001) Antiapoptotic proteins. The bcl-2 and inhibitor of apoptosis protein families. Cardiol Clin 19(1):57–74

    Article  PubMed  CAS  Google Scholar 

  • Eto K, Asada T, Arima K, Makifuchi T, Kimura H (2002) Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem Biophys Res Commun 293(5):1485–1488

    Article  PubMed  CAS  Google Scholar 

  • Ganguli M, Chandra V, Kamboh MI, Johnston JM, Dodge HH, Thelma BK, Juyal RC, Pandav R, Belle SH, DeKosky ST (2000) Apolipoprotein E polymorphism and Alzheimer disease: the Indo-US Cross-National Dementia Study. Arch Neurol 57(6):824–830

    Article  PubMed  CAS  Google Scholar 

  • Ghoneim AI, Abdel-Naim AB, Khalifa AE, El-Denshary ES (2002) Protective effects of curcumin against ischaemia/reperfusion insult in rat forebrain. Pharmacol Res 46(3):273–279

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Tortosa E, Newell K, Irizarry MC, Albert M, Growdon JH, Hyman BT (1999) Clinical and quantitative pathologic correlates of dementia with Lewy bodies. Neurology 53(6):1284–1291

    Article  PubMed  CAS  Google Scholar 

  • Gottfries CG, Lehmann W, Regland B (1998) Early diagnosis of cognitive impairment in the elderly with the focus on Alzheimer’s disease. J Neural Transm 105(8–9):773–786

    Article  PubMed  CAS  Google Scholar 

  • Ho PI, Ortiz D, Rogers E, Shea TB (2002) Multiple aspects of homocysteine neurotoxicity: glutamate excitotoxicity, kinase hyperactivation and DNA damage. J Neurosci Res 70(5):694–702

    Article  PubMed  CAS  Google Scholar 

  • Hoehn MM (1987) Parkinson’s disease: progression and mortality. Adv Neurol 45:457–461

    PubMed  CAS  Google Scholar 

  • Jagatha B, Mythri RB, Vali S, Bharath MM (2008) Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: therapeutic implications for Parkinson’s disease explained via in silico studies. Free Radic Biol Med 44(5):907–917

    Article  PubMed  CAS  Google Scholar 

  • Kanthasamy AG, Kitazawa M, Kanthasamy A, Anantharam V (2005) Dieldrin-induced neurotoxicity: relevance to Parkinson’s disease pathogenesis. Neurotoxicology 26(4):701–719

    Article  PubMed  CAS  Google Scholar 

  • Kim WK, Pae YS (1996) Involvement of N-methyl-d-aspartate receptor and free radical in homocysteine-mediated toxicity on rat cerebellar granule cells in culture. Neurosci Lett 216(2):117–120

    PubMed  CAS  Google Scholar 

  • Korsmeyer SJ, Shutter JR, Veis DJ, Merry DE, Oltvai ZN (1993) Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Semin Cancer Biol 4(6):327–332

    PubMed  CAS  Google Scholar 

  • Krajewska M, Zapata JM, Meinhold-Heerlein I, Hedayat H, Monks A, Bettendorf H, Shabaik A, Bubendorf L, Kallioniemi OP, Kim H, Reifenberger G, Reed JC, Krajewski S (2002) Expression of Bcl-2 family member Bid in normal and malignant tissues. Neoplasia 4(2):129–140

    Article  PubMed  CAS  Google Scholar 

  • Kruman C II, Culmsee SL, Chan Y, Kruman Z, Guo LP, Mattson MP (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 20(18):6920–6926

    PubMed  CAS  Google Scholar 

  • Kuhn W, Roebroek R, Blom H, van Oppenraaij D, Przuntek H, Kretschmer A, Buttner T, Woitalla D, Muller T (1998) Elevated plasma levels of homocysteine in Parkinson’s disease. Eur Neurol 40(4):225–227

    Article  PubMed  CAS  Google Scholar 

  • Lee ES, Chen H, Soliman KF, Charlton CG (2005) Effects of homocysteine on the dopaminergic system and behavior in rodents. Neurotoxicology 26(3):361–371

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA, Kim WK, Choi YB, Kumar S, D’Emilia DM, Rayudu PV, Arnelle DR, Stamler JS (1997) Neurotoxicity associated with dual actions of homocysteine at the N-methyl-d-aspartate receptor. Proc Natl Acad Sci U S A 94(11):5923–5928

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Fan Z, Han Y, Lu S, Zhang D, Bai X, Xu W, Li J, Wang H (2011) Curcumin attenuates peroxynitrite-induced neurotoxicity in spiral ganglion neurons. Neurotoxicology 32(1):150–157

    Article  PubMed  CAS  Google Scholar 

  • Lotharius J, Brundin P (2002) Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 3(12):932–942

    Article  PubMed  CAS  Google Scholar 

  • Ma QL, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ, Chen PP, Hudspeth B, Chen C, Zhao Y, Vinters HV, Frautschy SA, Cole GM (2009) Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci 29(28):9078–9089

    Article  PubMed  CAS  Google Scholar 

  • Maler JM, Seifert W, Huther G, Wiltfang J, Ruther E, Kornhuber J, Bleich S (2003) Homocysteine induces cell death of rat astrocytes in vitro. Neurosci Lett 347(2):85–88

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Duan W (1999) “Apoptotic” biochemical cascades in synaptic compartments: roles in adaptive plasticity and neurodegenerative disorders. J Neurosci Res 58(1):152–166

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Shea TB (2003) Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 26(3):137–146

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Pedersen WA, Duan W, Culmsee C, Camandola S (1999) Cellular and molecular mechanisms underlying perturbed energy metabolism and neuronal degeneration in Alzheimer’s and Parkinson’s diseases. Ann N Y Acad Sci 893:154–175

    Article  PubMed  CAS  Google Scholar 

  • Mooney SM, Miller MW (2000) Expression of bcl-2, bax, and caspase-3 in the brain of the developing rat. Brain Res Dev Brain Res 123(2):103–117

    Article  PubMed  CAS  Google Scholar 

  • Muller T, Werne B, Fowler B, Kuhn W (1999) Nigral endothelial dysfunction, homocysteine, and Parkinson’s disease. Lancet 354(9173):126–127

    Article  PubMed  CAS  Google Scholar 

  • Muller T, Woitalla D, Hauptmann B, Fowler B, Kuhn W (2001) Decrease of methionine and S-adenosylmethionine and increase of homocysteine in treated patients with Parkinson’s disease. Neurosci Lett 308(1):54–56

    Article  PubMed  CAS  Google Scholar 

  • Muller T, Woitalla D, Fowler B, Kuhn W (2002) 3-OMD and homocysteine plasma levels in parkinsonian patients. J Neural Transm 109(2):175–179

    Article  PubMed  CAS  Google Scholar 

  • Nurk E, Refsum H, Tell GS, Engedal K, Vollset SE, Ueland PM, Nygaard HA, Smith AD (2005) Plasma total homocysteine and memory in the elderly: the Hordaland Homocysteine Study. Ann Neurol 58(6):847–857

    Article  PubMed  CAS  Google Scholar 

  • Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74(4):609–619

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:453–501

    Article  PubMed  CAS  Google Scholar 

  • Orrenius S, Gogvadze V, Zhivotovsky B (2007) Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 47:143–183

    Article  PubMed  CAS  Google Scholar 

  • Park SY, Kim HS, Cho EK, Kwon BY, Phark S, Hwang KW, Sul D (2008) Curcumin protected PC12 cells against beta-amyloid-induced toxicity through the inhibition of oxidative damage and tau hyperphosphorylation. Food Chem Toxicol 46(8):2881–2887

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates, 5th Edn. Elsevier/Academic Press, San Diego

    Google Scholar 

  • Pompeiano M, Blaschke AJ, Flavell RA, Srinivasan A, Chun J (2000) Decreased apoptosis in proliferative and postmitotic regions of the caspase 3-deficient embryonic central nervous system. J Comp Neurol 423(1):1–12

    Article  PubMed  CAS  Google Scholar 

  • Quinn CT, Griener JC, Bottiglieri T, Arning E, Winick NJ (2004) Effects of intraventricular methotrexate on folate, adenosine, and homocysteine metabolism in cerebrospinal fluid. J Pediatr Hematol Oncol 26(6):386–388

    Article  PubMed  Google Scholar 

  • Rajeswari A, Sabesan M (2008) Inhibition of monoamine oxidase-B by the polyphenolic compound, curcumin and its metabolite tetrahydrocurcumin, in a model of Parkinson’s disease induced by MPTP neurodegeneration in mice. Inflammopharmacology 16(2):96–99

    Article  PubMed  CAS  Google Scholar 

  • Ramassamy C (2006) Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol 545(1):51–64

    Article  PubMed  CAS  Google Scholar 

  • Regland B, Andersson M, Abrahamsson L, Bagby J, Dyrehag LE, Gottfries CG (1997) Increased concentrations of homocysteine in the cerebrospinal fluid in patients with fibromyalgia and chronic fatigue syndrome. Scand J Rheumatol 26(4):301–307

    Article  PubMed  CAS  Google Scholar 

  • Reutens S, Sachdev P (2002) Homocysteine in neuropsychiatric disorders of the elderly. Int J Geriatr Psychiatry 17(9):859–864

    Article  PubMed  Google Scholar 

  • Roghani M, Behzadi G (2001) Neuroprotective effect of vitamin E on the early model of Parkinson’s disease in rat: behavioral and histochemical evidence. Brain Res 892(1):211–217

    Article  PubMed  CAS  Google Scholar 

  • Shen SQ, Zhang Y, Xiang JJ, Xiong CL (2007) Protective effect of curcumin against liver warm ischemia/reperfusion injury in rat model is associated with regulation of heat shock protein and antioxidant enzymes. World J Gastroenterol 13(13):1953–1961

    PubMed  CAS  Google Scholar 

  • Streck EL, Bavaresco CS, Netto CA, Wyse AT (2004) Chronic hyperhomocysteinemia provokes a memory deficit in rats in the Morris water maze task. Behav Brain Res 153(2):377–381

    Article  PubMed  CAS  Google Scholar 

  • Su JH, Anderson AJ, Cummings BJ, Cotman CW (1994) Immunohistochemical evidence for apoptosis in Alzheimer’s disease. Neuroreport 5(18):2529–2533

    Article  PubMed  CAS  Google Scholar 

  • Sumanont Y, Murakami Y, Tohda M, Vajragupta O, Watanabe H, Matsumoto K (2007) Effects of manganese complexes of curcumin and diacetylcurcumin on kainic acid-induced neurotoxic responses in the rat hippocampus. Biol Pharm Bull 30(9):1732–1739

    Article  PubMed  CAS  Google Scholar 

  • Sun F, Akazawa S, Sugahara K, Kamihira S, Kawasaki E, Eguchi K, Koji T (2002) Apoptosis in normal rat embryo tissues during early organogenesis: the possible involvement of Bax and Bcl-2. Arch Histol Cytol 65(2):145–157

    Article  PubMed  CAS  Google Scholar 

  • Thiyagarajan M, Sharma SS (2004) Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci 74(8):969–985

    Article  PubMed  CAS  Google Scholar 

  • Thomas P, Wang YJ, Zhong JH, Kosaraju S, O’Callaghan NJ, Zhou XF, Fenech M (2009) Grape seed polyphenols and curcumin reduce genomic instability events in a transgenic mouse model for Alzheimer’s disease. Mutat Res 661(1–2):25–34

    PubMed  CAS  Google Scholar 

  • Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267(5203):1456–1462

    Article  PubMed  CAS  Google Scholar 

  • Watson RE, Craven NM, Kang S, Jones CJ, Kielty CM, Griffiths CE (2001) A short-term screening protocol, using fibrillin-1 as a reporter molecule, for photoaging repair agents. J Invest Dermatol 116(5):672–678

    Article  PubMed  CAS  Google Scholar 

  • Wilson I, Gamble M (2002) The hematoxylin and eosin. In: Bancroft JD, Gamble (eds) Theory and practice of histological techniques, 5th edn. Churchill Livingstone, London, pp 125–138

    Google Scholar 

  • Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    Article  PubMed  CAS  Google Scholar 

  • Yanai Y, Shibasaki T, Kohno N, Mitsui T, Nakajima H (1983) Concentrations of sulfur-containing free amino acids in lumbar cerebrospinal fluid from patients with consciousness disturbances. Acta Neurol Scand 68(6):386–393

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Zhang D, Yang Z, Hu X, Qian S, Liu J, Wilson B, Block M, Hong JS (2008) Curcumin protects dopaminergic neuron against LPS induced neurotoxicity in primary rat neuron/glia culture. Neurochem Res 33(10):2044–2053

    Article  PubMed  CAS  Google Scholar 

  • Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic Res 39(10):1119–1125

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Cai Y, Adachi MT, Oshiro S, Aso T, Kaufman RJ, Kitajima S (2001) Homocysteine induces programmed cell death in human vascular endothelial cells through activation of the unfolded protein response. J Biol Chem 276(38):35867–35874

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Sabetkasaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansouri, Z., Sabetkasaei, M., Moradi, F. et al. Curcumin has Neuroprotection Effect on Homocysteine Rat Model of Parkinson. J Mol Neurosci 47, 234–242 (2012). https://doi.org/10.1007/s12031-012-9727-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9727-3

Keywords

Navigation