Skip to main content

Advertisement

Log in

Hyperbaric Oxygen Treatment Produces an Antinociceptive Response Phase and Inhibits Astrocyte Activation and Inflammatory Response in a Rat Model of Neuropathic Pain

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Hyperbaric oxygen (HBO) treatment has been proven to be a promising candidate for protection of the nervous system after acute injury in animal models of neuropathic pain. The purposes of this study were to examine the antinociceptive response phase induced by HBO treatment in a model of neuropathic pain and to determine the dependence of the treatment's mechanism of alleviating neuropathic pain on the inhibition of spinal astrocyte activation. Neuropathic pain was induced in rats by chronic constriction injury of the sciatic nerve. Mechanical threshold and thermal latency were tested preoperatively and for 1 week postoperatively, four times daily at fixed time points. Methane dicarboxylic aldehyde (MDA) and superoxide dismutase (SOD) parameters were used as indices of oxidative stress response and tested before and after the treatment. The inflammatory cytokines interleukin (IL)-1β and IL-10 were assayed in the sciatic nerve were with enzyme-linked immunoassay. Glial fibrillary acidic protein activation in the spinal cord was evaluated immunohistochemically. The rats exhibited temporary allodynia immediately after HBO treatment completion. This transient allodynia was closely associated with changes in MDA and SOD levels. A single HBO treatment caused a short-acting antinociceptive response phase. Repetitive HBO treatment led to a long-acting antinociceptive response phase and inhibited astrocyte activation. These results indicated that HBO treatment played a dual role in the aggravation and alleviation of neuropathic pain, though the aggravated pain effect (transient allodynia) was far less pronounced than the antinociceptive phase. Astrocyte inhibition and anti-inflammation may contribute to the antinociceptive effect of HBO treatment after nerve injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HBO:

Hyperbaric oxygen

TNF:

Tumor necrosis factor

CCI:

Chronic constriction injury

ATA:

Atmospheres absolute pressure

MWT:

Mechanical withdrawal threshold

TWL:

Thermal withdrawal latency

AB:

Avidin-biotin

GFAP:

Glial fibrillary acidic protein

ROS:

Oxygen species

CREB:

cAMP response element-binding protein

MDA:

Methane dicarboxylic aldehyde

SOD:

Superoxide dismutase

References

  • Abbadie C, Bhangoo S, De Koninck Y, Malcangio M, Melik-Parsadaniantz S, White FA (2009) Chemokines and pain mechanisms. Brain Res Rev 60:125–134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bennett GJ, Xie Y-K (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    Article  CAS  PubMed  Google Scholar 

  • Bhogal RH, Weston CJ, Curbishley SM, Adams DH, Afford SC (2012) Autophagy: a cyto-protective mechanism which prevents primary human hepatocyte apoptosis during oxidative stress. Autophagy 8:545–558

    Google Scholar 

  • Boussi-Gross R, Golan H, Fishlev G, Bechor Y, Volkov O, Bergan J, Friedman M, Hoofien D, Shlamkovitch N, Ben-Jacob E, Efrati S (2013) Hyperbaric Oxygen Therapy Can Improve Post Concussion Syndrome Years after Mild Traumatic Brain Injury - Randomized Prospective Trial. PLoS One 8:e79995

    Article  PubMed Central  PubMed  Google Scholar 

  • Bubici C, Papa S, Pham C, Zazzeroni F, Franzoso G (2006) The NF-kB-mediated control of ROS and JNK signaling

  • Chen J-J, Lue J-H, Lin L-H, Huang C-T, Chiang RP-Y, Chen C-L, Tsai Y-J (2010) Effects of pre-emptive drug treatment on astrocyte activation in the cuneate nucleus following rat median nerve injury. Pain 148:158–166

    Article  CAS  PubMed  Google Scholar 

  • Chen MJ, Kress B, Han X, Moll K, Peng W, Ji RR, Nedergaard M (2012) Astrocytic CX43 hemichannels and gap junctions play a crucial role in development of chronic neuropathic pain following spinal cord injury. Glia 60:1660–1670

    Article  PubMed Central  PubMed  Google Scholar 

  • Chung E, Zelinski LM, Ohgami Y, Shirachi DY, Quock RM (2010) Hyperbaric oxygen treatment induces a 2-phase antinociceptive response of unusually long duration in mice. J Pain 11:847–853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dayan K, Keser A, Konyalioglu S, Erturk M, Aydin F, Sengul G, Dagci T (2012) The effect of hyperbaric oxygen on neuroregeneration following acute thoracic spinal cord injury. Life Sci 90:360–364

    Article  CAS  PubMed  Google Scholar 

  • DeLeo JA, Yezierski RP (2001) The role of neuroinflammation and neuroimmune activation in persistent pain. Pain 90:1–6

    Article  CAS  PubMed  Google Scholar 

  • Efrati S, Fishlev G, Bechor Y, Volkov O, Bergan J, Kliakhandler K, Kamiager I, Gal N, Friedman M, Ben-Jacob E, Golan H (2013) Hyperbaric oxygen induces late neuroplasticity in post stroke patients - randomized, prospective trial. PLoS One 8:e53716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eliav E, Benoliel R, Herzberg U, Kalladka M, Tal M (2009) The role of IL-6 and IL-1β in painful perineural inflammatory neuritis. Brain Behav Immun 23:474–484

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Cai H, Li Q, Du Z, Tan W (2012) The effects of ROS-mediating oxygen tension on human CD34 < sup > +</sup > CD38 < sup > −</sup > cells induced into mature dendritic cells. J Biotechnol 158:104–111

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Kim HK, Chung JM, Chung K (2007) Reactive oxygen species (ROS) are involved in enhancement of NMDA-receptor phosphorylation in animal models of pain. Pain 131:262–271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • George Mychaskiw I, Pan J, Shah S, Zubkov AY, Clower B, Badr AE, Zhang JH (2005) Effects of hyperbaric oxygen on skin blood flow and tissue morphology following sciatic nerve constriction. Pain Physician 8

  • Girn HRS, Ahilathirunayagam S, Mavor AI, Homer-Vanniasinkam S (2007) Reperfusion syndrome: cellular mechanisms of microvascular dysfunction and potential therapeutic strategies. Vasc Endovascular Surg 41:277–293

    Article  PubMed  Google Scholar 

  • Gu N, Niu JY, Liu WT, Sun YY, Liu S, Lv Y, Dong HL, Song XJ, Xiong LZ (2012) Hyperbaric oxygen therapy attenuates neuropathic hyperalgesia in rats and idiopathic trigeminal neuralgia in patients. Eur J Pain 16:1094–1105

    Article  CAS  PubMed  Google Scholar 

  • Guedes RP, Araújo AS, Janner D, Belló-Klein A, Ribeiro MF, Partata WA (2008) Increase in reactive oxygen species and activation of Akt signaling pathway in neuropathic pain. Cell Mol Neurobiol 28:1049–1056

    Google Scholar 

  • Guo W, Wang H, Watanabe M, Shimizu K, Zou S, LaGraize SC, Wei F, Dubner R, Ren K (2007) Glial–cytokine–neuronal interactions underlying the mechanisms of persistent pain. J Neurosci 27:6006–6018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hald A, Nedergaard S, Hansen RR, Ding M, Heegaard AM (2009) Differential activation of spinal cord glial cells in murine models of neuropathic and cancer pain. Eur J Pain 13:138–145

    Article  CAS  PubMed  Google Scholar 

  • Hirata T, Cui YJ, Funakoshi T, Mizukami Y, Ishikawa Y-i, Shibasaki F, Matsumoto M, Sakabe T (2007) The temporal profile of genomic responses and protein synthesis in ischemic tolerance of the rat brain induced by repeated hyperbaric oxygen. Brain Res 1130:214–222

    Article  CAS  PubMed  Google Scholar 

  • Juif P-E, Anton F, Hanesch U (2012) Pain behavior and spinal cell activation due to carrageenan-induced inflammation in two inbred rat strains with differential hypothalamic–pituitary–adrenal axis reactivity. Physiol Behav 105:901–908

    Article  CAS  PubMed  Google Scholar 

  • Kanaan SA, Poole S, Saadé NE, Jabbur S, Safieh-Garabedian B (1998) Interleukin-10 reduces the endotoxin-induced hyperalgesia in mice. J Neuroimmunol 86:142–150

    Article  CAS  PubMed  Google Scholar 

  • Kiralp M, Yildiz Ş, Vural D, Keskin I, Ay H, Dursun H (2004) Effectiveness of hyperbaric oxygen therapy in the treatment of complex regional pain syndrome. J Int Med Res 32:258–262

    Article  CAS  PubMed  Google Scholar 

  • Li F, Fang L, Huang S, Yang Z, Nandi J, Thomas S, Chen C, Camporesi E (2011) Hyperbaric Oxygenation Therapy Alleviates Chronic Constrictive Injury–Induced Neuropathic Pain and Reduces Tumor Necrosis Factor-Alpha Production. Anesth Analg 113:626–633

    CAS  PubMed  Google Scholar 

  • Mika J, Osikowicz M, Rojewska E, Korostynski M, Wawrzczak-Bargiela A, Przewlocki R, Przewlocka B (2009) Differential activation of spinal microglial and astroglial cells in a mouse model of peripheral neuropathic pain. Eur J Pharmacol 623:65–72

    Article  CAS  PubMed  Google Scholar 

  • Milligan ED, Watkins LR (2009) Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 10:23–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    Article  CAS  PubMed  Google Scholar 

  • Mu J, Ostrowski RP, Soejima Y, Rolland WB, Krafft PR, Tang J, Zhang JH (2012) Delayed hyperbaric oxygen therapy induces cell proliferation through stabilization of cAMP responsive element binding protein in the rat model of MCAo-induced ischemic brain injury. Neurobiol Dis

  • Nie H, Xiong L, Lao N, Chen S, Xu N, Zhu Z (2005) Hyperbaric oxygen preconditioning induces tolerance against spinal cord ischemia by upregulation of antioxidant enzymes in rabbits. J Cereb Blood Flow Metab 26:666–674

    Article  Google Scholar 

  • Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10:1361–1368

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Gelman BB, Lisinicchia JG, Tang S-J (2012) Chronic-pain-associated astrocytic reaction in the spinal cord dorsal horn of human immunodeficiency virus-infected patients. J Neurosci 32:10833–10840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song X-J, Hu S-J, Greenquist KW, Zhang J-M, LaMotte RH (1999) Mechanical and thermal hyperalgesia and ectopic neuronal discharge after chronic compression of dorsal root ganglia. J Neurophysiol 82:3347–3358

    CAS  PubMed  Google Scholar 

  • Sümen G, Çimşit M, Eroǧlu L (2001) Hyperbaric oxygen treatment reduces carrageenan-induced acute inflammation in rats. Eur J Pharmacol 431:265–268

    Article  PubMed  Google Scholar 

  • Tai P-A, Chang C-K, Niu K-C, Lin M-T, Chiu W-T, Lin C-M (2010) Attenuating experimental spinal cord injury by hyperbaric oxygen: stimulating production of vasculoendothelial and glial cell line-derived neurotrophic growth factors and interleukin-10. J Neurotrauma 27:1121–1127

    Article  PubMed  Google Scholar 

  • Tan AM, Zhao P, Waxman SG, Hains BC (2009) Early microglial inhibition preemptively mitigates chronic pain development after experimental spinal cord injury. J Rehabil Res Dev 46:123–133

    Article  PubMed  Google Scholar 

  • Thompson CD, Uhelski ML, Wilson JR, Fuchs PN (2010) Hyperbaric oxygen treatment decreases pain in two nerve injury models. Neurosci Res 66:279–283

    Article  CAS  PubMed  Google Scholar 

  • von Hehn CA, Baron R, Woolf CJ (2012) Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron 73:638–652

    Article  Google Scholar 

  • Watkins LR, Milligan ED, Maier SF (2001) Glial activation: a driving force for pathological pain. Trends Neurosci 24:450–455

    Article  CAS  PubMed  Google Scholar 

  • Wilson HD, Wilson JR, Fuchs PN (2006) Hyperbaric oxygen treatment decreases inflammation and mechanical hypersensitivity in an animal model of inflammatory pain. Brain Res 1098:126–128

    Article  CAS  PubMed  Google Scholar 

  • Wilson HD, Toepfer VE, Senapati AK, Wilson JR, Fuchs PN (2007) Hyperbaric oxygen treatment is comparable to acetylsalicylic acid treatment in an animal model of arthritis. J Pain 8:924–930

    Article  CAS  PubMed  Google Scholar 

  • Yildiz S, Uzun G (2006) Hyperbaric oxygen therapy in chronic pain management. Curr Pain Headache Rep 10:95–100

    Article  PubMed  Google Scholar 

  • Yogaratnam JZ, Laden G, Madden LA, Seymour A-M, Guvendik L, Cowen M, Greenman J, Cale A, Griffin S (2006) Hyperbaric oxygen: a new drug in myocardial revascularization and protection? Cardiovasc Revasc Med 7:146–154

    Article  PubMed  Google Scholar 

  • Yowtak J, Lee KY, Kim HY, Wang J, Kim HK, Chung K, Chung JM (2011) Reactive oxygen species contribute to neuropathic pain by reducing spinal GABA release. Pain 152:844–852

    Google Scholar 

  • Zelinski LM, Ohgami Y, Chung E, Shirachi DY, Quock RM (2009) A prolonged nitric oxide-dependent, opioid-mediated antinociceptive effect of hyperbaric oxygen in mice. J Pain 10:167–172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang R-X, Li A, Liu B, Wang L, Ren K, Zhang H, Berman BM, Lao L (2008) IL-1ra alleviates inflammatory hyperalgesia through preventing phosphorylation of NMDA receptor NR-1 subunit in rats. Pain 135:232–239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Plan Project and B. Braun Anesthesia Scientific Research Fund (grant no. F10-205-1-41 and BBF 2012-012). We thank Dr. Cui Jian-Jun for supporting this study.

Conflict of Interest

There are no ethical/legal conflicts involved in the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bai-Song Zhao.

Additional information

A short note

HBO treatment may be an important intervention for preventing neuronal damage. Recent studies have reported that HBO treatment can increase neuroplasticity leading to repair of chronically impaired brain functions and improved quality of life in patients who have experienced traumatic brain injury with prolonged post-concussion syndrome even in a late chronic stage. Furthermore, HBO can lead to significant neurological improvements in stroke patients, including chronic late-stage stroke patients. The observed clinical improvements suggest that HBO therapy after brain damage favors the repair of nervous tissue and function. The results presented in this paper may pave the way for future experimental studies, including research addressing HBO therapy efficacy in peripheral versus central nervous system damage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, BS., Meng, LX., Ding, YY. et al. Hyperbaric Oxygen Treatment Produces an Antinociceptive Response Phase and Inhibits Astrocyte Activation and Inflammatory Response in a Rat Model of Neuropathic Pain. J Mol Neurosci 53, 251–261 (2014). https://doi.org/10.1007/s12031-013-0213-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0213-3

Keywords

Navigation