Skip to main content
Log in

Blood Volatile Organic Compounds as Potential Biomarkers for Amyotrophic Lateral Sclerosis: an Animal Study in the SOD1 G93A Mouse

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a rapid progressive motor neuron disease. Currently, there are no specific or reliable biomarkers for the diagnosis of this disease, and there are no effective medical treatments. The early diagnosis and treatment of this disease has the potential to prolong the survival of ALS patients, but typically, approximately 1 year passes between the onset of symptoms and the diagnosis of this disease. Therefore, there is an urgent need to find specific biomarkers to enable early diagnosis and therapeutic intervention in this disease. Analyzing the volatile organic compounds (VOCs) present in the blood and exhaled breath is a useful and convenient approach for investigating potential biomarkers. In this study, we examined the VOCs present in blood samples from copper zinc superoxide dismutase 1 (SOD1) glycine to alanine mutation at position 93 (G93A) mice to determine whether a specific biomarker pattern exists in these transgenic mice. Blood samples from ALS mice and their age-matched littermates were analyzed using gas chromatography-mass spectrometry. A total of 12 independent compounds associated with oxidative stress were identified at the early stage of disease. The data show that there is a specific pattern of blood VOCs in ALS mice that could potentially be used as biomarkers that could improve the diagnosis of this disease. Furthermore, these compounds could also potentially be used to monitor the response to neuroprotective agents and to help us better understand the underlying mechanisms of ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguirre N, Beal MF, Matson WR, Bogdanov MB (2005) Increased oxidative damage to DNA in an animal model of amyotrophic lateral sclerosis. Free Radic Res 39:383–388

    Article  CAS  PubMed  Google Scholar 

  • Altomare DF, Di Lena M, Porcelli F, Trizio L, Travaglio E, Tutino M, Dragonieri S, Memeo V, de Gennaro G (2013) Exhaled volatile organic compounds identify patients with colorectal cancer. Br J Surg 100:144–150

    Article  CAS  PubMed  Google Scholar 

  • Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10(Suppl):S18–S25

    Article  PubMed  Google Scholar 

  • Bento-Abreu A, Van Damme P, Van Den Bosch L, Robberecht W (2010) The neurobiology of amyotrophic lateral sclerosis. Eur J Neurosci 31:2247–2265

    Article  PubMed  Google Scholar 

  • Blasco H, Corcia P, Pradat PF, Bocca C, Gordon PH, Veyrat-Durebex C, Mavel S, Nadal-Desbarats L, Moreau C, Devos D, Andres CR, Emond P (2013) Metabolomics in cerebrospinal fluid of patients with amyotrophic lateral sclerosis: an untargeted approach via high-resolution mass spectrometry. J Proteome Res 12:3746–3754

    Article  CAS  PubMed  Google Scholar 

  • Bogdanov M, Brown RH, Matson W, Smart R, Hayden D, O'Donnell H, Flint Beal M, Cudkowicz M (2000) Increased oxidative damage to DNA in ALS patients. Free Radic Biol Med 29:652–658

    Article  CAS  PubMed  Google Scholar 

  • Bowser R, Lacomis D (2009) Applying proteomics to the diagnosis and treatment of ALS and related diseases. Muscle Nerve 40:753–762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron D (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299

    Article  CAS  PubMed  Google Scholar 

  • Davies KJ, Delsignore ME, Lin SW (1987) Protein damage and degradation by oxygen radicals. II. Modification of amino acids. J Biol Chem 262:9902–9907

    CAS  PubMed  Google Scholar 

  • Ganesalingam J, Bowser R (2010) The application of biomarkers in clinical trials for motor neuron disease. Biomark Med 4:281–297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gordon SM, Wallace LA, Brinkman MC, Callahan PJ, Kenny DV (2002) Volatile organic compounds as breath biomarkers for active and passive smoking. Environ Health Perspect 110:689–698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775

    Article  CAS  PubMed  Google Scholar 

  • Hall ED, Andrus PK, Oostveen JA, Fleck TJ, Gurney ME (1998) Relationship of oxygen radical-induced lipid peroxidative damage to disease onset and progression in a transgenic model of familial ALS. J Neurosci Res 53:66–77

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  CAS  PubMed  Google Scholar 

  • Hassanein M, Callison JC, Callaway-Lane C, Aldrich MC, Grogan EL, Massion PP (2012) The state of molecular biomarkers for the early detection of lung cancer. Cancer Prev Res (Phila) 5:992–1006

    Article  CAS  Google Scholar 

  • Kanner J, German JB, Kinsella JE (1987) Initiation of lipid peroxidation in biological systems. Crit Rev Food Sci Nutr 25:317–364

    Article  CAS  PubMed  Google Scholar 

  • Knight JA (1998) Free radicals: their history and current status in aging and disease. Ann Clin Lab Sci 28:331–346

    CAS  PubMed  Google Scholar 

  • Kuzma M, Jamrozik Z, Baranczyk-Kuzma A (2006) Activity and expression of glutathione S-transferase pi in patients with amyotrophic lateral sclerosis. Clin Chim Acta 364:217–221

    Article  CAS  PubMed  Google Scholar 

  • Miana-Mena FJ, Munoz MJ, Yague G, Mendez M, Moreno M, Ciriza J, Zaragoza P, Osta R (2005) Optimal methods to characterize the G93A mouse model of ALS. Amyotroph Lateral Scler Other Motor Neuron Disord 6:55–62

    Article  CAS  PubMed  Google Scholar 

  • Miana-Mena FJ, Gonzalez-Mingot C, Larrode P, Munoz MJ, Olivan S, Fuentes-Broto L, Martinez-Ballarin E, Reiter RJ, Osta R, Garcia JJ (2011) Monitoring systemic oxidative stress in an animal model of amyotrophic lateral sclerosis. J Neurol 258:762–769

    Article  CAS  PubMed  Google Scholar 

  • Miller RG, Mitchell JD, Moore DH (2012) Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev 3, CD001447

    PubMed  Google Scholar 

  • Mitsumoto H, Santella RM, Liu X, Bogdanov M, Zipprich J, Wu HC, Mahata J, Kilty M, Bednarz K, Bell D, Gordon PH, Hornig M, Mehrazin M, Naini A, Flint Beal M, Factor-Litvak P (2008) Oxidative stress biomarkers in sporadic ALS. Amyotroph Lateral Scler 9:177–183

    Article  CAS  PubMed  Google Scholar 

  • Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    Article  CAS  PubMed  Google Scholar 

  • Peng G, Hakim M, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Tisch U, Haick H (2010) Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br J Cancer 103:542–551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Cudkowicz ME, Bogdanov M, Matson WR, Kristal BS, Beecher C, Harrison S, Vouros P, Flarakos J, Vigneau-Callahan K, Matson TD, Newhall KM, Beal MF, Brown RH Jr, Kaddurah-Daouk R (2005) Metabolomic analysis and signatures in motor neuron disease. Metabolomics 1:101–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shaw PJ (2005) Molecular and cellular pathways of neurodegeneration in motor neurone disease. J Neurol Neurosurg Psychiatry 76:1046–1057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simpson EP, Henry YK, Henkel JS, Smith RG, Appel SH (2004) Increased lipid peroxidation in sera of ALS patients: a potential biomarker of disease burden. Neurology 62:1758–1765

    Article  CAS  PubMed  Google Scholar 

  • Tandan R, Bradley WG (1985) Amyotrophic lateral sclerosis: Part 1. Clinical features, pathology, and ethical issues in management. Ann Neurol 18:271–280

    Article  CAS  PubMed  Google Scholar 

  • Tisch U, Schlesinger I, Ionescu R, Nassar M, Axelrod N, Robertman D, Tessler Y, Azar F, Marmur A, Aharon-Peretz J, Haick H (2013) Detection of Alzheimer’s and Parkinson’s disease from exhaled breath using nanomaterial-based sensors. Nanomedicine (Lond) 8:43–56

    Article  CAS  Google Scholar 

  • Traynor BJ, Codd MB, Corr B, Forde C, Frost E, Hardiman OM (2000) Clinical features of amyotrophic lateral sclerosis according to the El Escorial and Airlie House diagnostic criteria: a population-based study. Arch Neurol 57:1171–1176

    Article  CAS  PubMed  Google Scholar 

  • Turner MR, Kiernan MC, Leigh PN, Talbot K (2009) Biomarkers in amyotrophic lateral sclerosis. Lancet Neurol 8:94–109

    Article  CAS  PubMed  Google Scholar 

  • Turner MR, Bowser R, Bruijn L, Dupuis L, Ludolph A, McGrath M, Manfredi G, Maragakis N, Miller RG, Pullman SL, Rutkove SB, Shaw PJ, Shefner J, Fischbeck KH (2013) Mechanisms, models and biomarkers in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 14(Suppl 1):19–32

    Article  PubMed Central  PubMed  Google Scholar 

  • Zoing MC, Burke D, Pamphlett R, Kiernan MC (2006) Riluzole therapy for motor neurone disease: an early Australian experience (1996-2002). J Clin Neurosci 13:78–83

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Natural Science Foundation of China (No. 81171186), the Health Department Project of Heilongjiang Province (No. 2013017), the China Postdoctoral Science Foundation (No. 2013 M531069), the Foundation of Heilongjiang Educational Committee (No. 12531245), and the Doctoral Fund of the First Affiliated Hospital of Harbin Medical University (No. 2012B006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Honglin Feng or Enyou Li.

Additional information

Dr. Hongquan Jiang and Dr. Changsong Wang are co-first authors and contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, H., Wang, C., Ren, M. et al. Blood Volatile Organic Compounds as Potential Biomarkers for Amyotrophic Lateral Sclerosis: an Animal Study in the SOD1 G93A Mouse. J Mol Neurosci 55, 167–173 (2015). https://doi.org/10.1007/s12031-014-0297-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0297-4

Keywords

Navigation