Skip to main content
Log in

Cuprizone-Containing Pellets Are Less Potent to Induce Consistent Demyelination in the Corpus Callosum of C57BL/6 Mice

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The chopper chelator cuprizone serves as a valuable chemical tool to induce consistent and reproducible demyelination in the central nervous system. However, the daily preparation of fresh cuprizone powder mixed in finely ground rodent chow might well be a particular health problem. Alternative methods, such as the fabrication of cuprizone-containing pellets, are available. The effectiveness of this method is, however, not known. In the present study, we compared whether intoxication of C57BL/6 mice with 0.25% cuprizone mixed into ground rodent chow does induce demyelination to a similar extent compared to a cuprizone-pellet intoxication protocol. We found that feeding of 0.25% cuprizone in ground chow provides a strong, well-defined, and reproducible demyelination along with increased accumulation of microglia and axonal damage in the corpus callosum, whereas all analyzed parameters were significantly less distinct in mice fed with cuprizone-containing pellets at an equivalent concentration of cuprizone at week 5. Even a higher concentration of cuprizone in pellet formulation was less potent compared to do so. This study illustrates that the established protocol of cuprizone intoxication (i.e., mixed in ground rodent chow) is the gold standard method to achieve consistent and reproducible demyelination. Why cuprizone loses its effectiveness in pellet formulation needs to be addressed in subsequent studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acs P, Komoly S (2012) Selective ultrastructural vulnerability in the cuprizone-induced experimental demyelination. Ideggyogyaszati szemle 65:266–270

    PubMed  Google Scholar 

  • Acs P et al (2009) 17beta-estradiol and progesterone prevent cuprizone provoked demyelination of corpus callosum in male mice. Glia 57:807–814. doi:10.1002/glia.20806

    Article  PubMed  Google Scholar 

  • Arnold S, Beyer C (2009) Neuroprotection by estrogen in the brain: the mitochondrial compartment as presumed therapeutic target. J Neurochem 110:1–11. doi:10.1111/j.1471-4159.2009.06133.x

    Article  CAS  PubMed  Google Scholar 

  • Biancotti JC, Kumar S, de Vellis J (2008) Activation of inflammatory response by a combination of growth factors in cuprizone-induced demyelinated brain leads to myelin repair. Neurochem Res 33:2615–2628. doi:10.1007/s11064-008-9792-8

    Article  CAS  PubMed  Google Scholar 

  • Binder MD et al (2008) Gas6 deficiency increases oligodendrocyte loss and microglial activation in response to cuprizone-induced demyelination. J Neurosci: Off J Soc Neurosci 28:5195–5206. doi:10.1523/jneurosci.1180-08.2008

    Article  CAS  Google Scholar 

  • Blakemore WF (1972) Observations on oligodendrocyte degeneration, the resolution of status spongiosus and remyelination in cuprizone intoxication in mice. J Neurocytol 1:413–426

    Article  CAS  PubMed  Google Scholar 

  • Carey EM, Freeman NM (1983) Biochemical changes in cuprizone-induced spongiform encephalopathy. I. Changes in the activities of 2′,3′-cyclic nucleotide 3′-phosphohydrolase, oligodendroglial ceramide galactosyl transferase, and the hydrolysis of the alkenyl group of alkenyl, acyl-glycerophospholipids by plasmalogenase in different regions of the brain. Neurochem Res 8:1029–1044

    Article  CAS  PubMed  Google Scholar 

  • Chedid A, Jao W, Port J (1980) Megamitochondria in hepatic and renal disease. Am J Gastroenterol 73:319–324

    CAS  PubMed  Google Scholar 

  • Chen Z et al (2015) Cuprizone does not induce CNS demyelination in nonhuman primates. Ann Clin Transl Neurol 2:208–213. doi:10.1002/acn3.159

    Article  CAS  PubMed  Google Scholar 

  • Dupree JL, Mason JL, Marcus JR, Stull M, Levinson R, Matsushima GK, Popko B (2004) Oligodendrocytes assist in the maintenance of sodium channel clusters independent of the myelin sheath. Neuron Glia Biol 1:179–192. doi:10.1017/S1740925X04000304

    Article  PubMed  PubMed Central  Google Scholar 

  • Fjaer S, Bo L, Lundervold A, Myhr KM, Pavlin T, Torkildsen O, Wergeland S (2013) Deep gray matter demyelination detected by magnetization transfer ratio in the cuprizone model. PLoS One 8:e84162. doi:10.1371/journal.pone.0084162

    Article  PubMed  PubMed Central  Google Scholar 

  • Franco-Pons N, Torrente M, Colomina MT, Vilella E (2007) Behavioral deficits in the cuprizone-induced murine model of demyelination/remyelination. Toxicol Lett 169:205–213. doi:10.1016/j.toxlet.2007.01.010

    Article  CAS  PubMed  Google Scholar 

  • Ghaiad HR, Nooh MM, El-Sawalhi MM, Shaheen AA (2016) Resveratrol promotes remyelination in cuprizone model of multiple sclerosis: biochemical and histological study. Mol Neurobiol. doi:10.1007/s12035-016-9891-5

    PubMed  Google Scholar 

  • Goldberg J, Clarner T, Beyer C, Kipp M (2015) Anatomical distribution of cuprizone-induced lesions in C57BL6 mice. J Mol Neurosci. doi:10.1007/s12031-015-0595-5

    PubMed  Google Scholar 

  • Groebe A, Clarner T, Baumgartner W, Dang J, Beyer C, Kipp M (2009) Cuprizone treatment induces distinct demyelination, astrocytosis, and microglia cell invasion or proliferation in the mouse cerebellum. Cerebellum (London, England) 8:163–174. doi:10.1007/s12311-009-0099-3

    Article  CAS  Google Scholar 

  • Grosse-Veldmann R, Becker B, Amor S, van der Valk P, Beyer C, Kipp M (2015) Lesion expansion in experimental demyelination animal models and multiple sclerosis lesions. Mol Neurobiol. doi:10.1007/s12035-015-9420-y

    PubMed  Google Scholar 

  • Gudi V, Gingele S, Skripuletz T, Stangel M (2014) Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned. Front Cell Neurosci 8:73. doi:10.3389/fncel.2014.00073

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagemeyer N et al (2012) Erythropoietin attenuates neurological and histological consequences of toxic demyelination in mice. Molecular Medicine (Cambridge, Mass) 18:628–635. doi:10.2119/molmed.2011.00457

    CAS  Google Scholar 

  • Hanzlikova V, Schiaffino S (1977) Mitochondrial changes in ischemic skeletal muscle. J Ultrastruct Res 60:121–133

    Article  CAS  PubMed  Google Scholar 

  • Heckers S, Held N, Kronenberg J, Skripuletz T, Bleich A, Gudi V, Stangel M (2017) Investigation of cuprizone inactivation by temperature. Neurotox Res. doi:10.1007/s12640-017-9704-2

    PubMed  Google Scholar 

  • Hibbits N, Yoshino J, Le TQ, Armstrong RC (2012) Astrogliosis during acute and chronic cuprizone demyelination and implications for remyelination. ASN neuro 4:393–408. doi:10.1042/an20120062

    Article  CAS  PubMed  Google Scholar 

  • Hiremath MM, Saito Y, Knapp GW, Ting JP, Suzuki K, Matsushima GK (1998) Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol 92:38–49

    Article  CAS  PubMed  Google Scholar 

  • Hoflich KM, Beyer C, Clarner T, Schmitz C, Nyamoya S, Kipp M, Hochstrasser T (2016) Acute axonal damage in three different murine models of multiple sclerosis: a comparative approach. Brain Res 1650:125–133. doi:10.1016/j.brainres.2016.08.048

    Article  PubMed  Google Scholar 

  • Hoppel CL, Tandler B (1973) Biochemical effects of cuprizone on mouse liver and heart mitochondria. Biochem Pharmacol 22:2311–2318

    Article  CAS  PubMed  Google Scholar 

  • Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S (1996) A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 224:855–862. doi:10.1006/bbrc.1996.1112

    Article  CAS  PubMed  Google Scholar 

  • Kipp M (2016) Remyelination strategies in multiple sclerosis: a critical reflection. Expert Rev Neurother 16:1–3. doi:10.1586/14737175.2016.1116387

    Article  CAS  PubMed  Google Scholar 

  • Kipp M, Nyamoya S, Hochstrasser T, Amor S (2016) Multiple sclerosis animal models: a clinical and histopathological perspective. Brain pathology (Zurich, Switzerland). doi:10.1111/bpa.12454

    Google Scholar 

  • Lewis RJ (2008) Hazardous chemicals desk reference vol 6th Ed. John Wiley & Sons, Inc., Hoboken

    Book  Google Scholar 

  • Lindner M, Fokuhl J, Linsmeier F, Trebst C, Stangel M (2009) Chronic toxic demyelination in the central nervous system leads to axonal damage despite remyelination. Neurosci Lett 453:120–125. doi:10.1016/j.neulet.2009.02.004

    Article  CAS  PubMed  Google Scholar 

  • Ludwin SK (1978) Central nervous system demyelination and remyelination in the mouse: an ultrastructural study of cuprizone toxicity. Laboratory investigation; a Journal of Technical Methods and Pathology 39:597–612

    CAS  PubMed  Google Scholar 

  • Matsushima GK, Morell P (2001) The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathology (Zurich, Switzerland) 11:107–116

    Article  CAS  Google Scholar 

  • Morell P, Barrett CV, Mason JL, Toews AD, Hostettler JD, Knapp GW, Matsushima GK (1998) Gene expression in brain during cuprizone-induced demyelination and remyelination. Mol Cell Neurosci 12:220–227. doi:10.1006/mcne.1998.0715

    Article  CAS  PubMed  Google Scholar 

  • Porta EA, Bergman BJ, Stein AA (1965) Acute alcoholic hepatitis. Am J Pathol 46:657–689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy PH, Reddy TP (2011) Mitochondria as a therapeutic target for aging and neurodegenerative diseases. Curr Alzheimer Res 8:393–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sachs HH, Bercury KK, Popescu DC, Narayanan SP, Macklin WB (2014) A new model of cuprizone-mediated demyelination/remyelination. ASN neuro 6. doi:10.1177/1759091414551955

  • Scheld M et al (2016) Neurodegeneration triggers peripheral immune cell recruitment into the forebrain. J Neurosci 36:1410–1415. doi:10.1523/jneurosci.2456-15.2016

    Article  CAS  PubMed  Google Scholar 

  • Schmidt T, Awad H, Slowik A, Beyer C, Kipp M, Clarner T (2013) Regional heterogeneity of cuprizone-induced demyelination: topographical aspects of the midline of the corpus callosum. J Mol Neurosci: MN 49:80–88. doi:10.1007/s12031-012-9896-0

    Article  CAS  PubMed  Google Scholar 

  • Sidman RL, Angevine JB, Pierce ET (1971) Atlas of the mouse brain and spinal cord. Harvard University Press Cambridge, Cambridge

    Google Scholar 

  • Skripuletz T et al (2010) Cerebellar cortical demyelination in the murine cuprizone model. Brain Pathology (Zurich, Switzerland) 20:301–312. doi:10.1111/j.1750-3639.2009.00271.x

    Article  CAS  Google Scholar 

  • Slowik A, Schmidt T, Beyer C, Amor S, Clarner T, Kipp M (2015) The sphingosine 1-phosphate receptor agonist FTY720 is neuroprotective after cuprizone-induced CNS demyelination. Br J Pharmacol 172:80–92. doi:10.1111/bph.12938

    Article  CAS  PubMed  Google Scholar 

  • Soundarapandian MM, Selvaraj V, Lo UG, Golub MS, Feldman DH, Pleasure DE, Deng W (2011) Zfp488 promotes oligodendrocyte differentiation of neural progenitor cells in adult mice after demyelination. Sci Rep 1:2. doi:10.1038/srep00002

    Article  PubMed  PubMed Central  Google Scholar 

  • Steelman AJ, Thompson JP, Li J (2012) Demyelination and remyelination in anatomically distinct regions of the corpus callosum following cuprizone intoxication. Neurosci Res 72:32–42. doi:10.1016/j.neures.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  • Stidworthy MF, Genoud S, Suter U, Mantei N, Franklin RJ (2003) Quantifying the early stages of remyelination following cuprizone-induced demyelination. Brain Pathol 13:329–339

    Article  PubMed  Google Scholar 

  • Strausak D, Mercer JF, Dieter HH, Stremmel W, Multhaup G (2001) Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases. Brain Res Bull 55:175–185

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Kikkawa Y (1969) Status spongiosus of CNS and hepatic changes induced by cuprizone (biscyclohexanone oxalyldihydrazone). Am J Pathol 54:307–325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tandler B, Hoppel CL (1973) Division of giant mitochondria during recovery from cuprizone intoxication. J Cell Biol 56:266–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tejedor LS, Wostradowski T, Gingele S, Skripuletz T, Gudi V, Stangel M (2017) The effect of stereotactic injections on demyelination and remyelination: a study in the cuprizone model. J Mol Neurosci. doi:10.1007/s12031-017-0888-y

    PubMed  Google Scholar 

  • Torkildsen O, Brunborg LA, Myhr KM, Bo L (2008) The cuprizone model for demyelination. Acta Neurol Scand Suppl 188:72–76. doi:10.1111/j.1600-0404.2008.01036.x

    Article  CAS  PubMed  Google Scholar 

  • Vakilzadeh G et al (2015) Protective effect of a cAMP analogue on behavioral deficits and neuropathological changes in cuprizone model of demyelination. Mol Neurobiol 52:130–141. doi:10.1007/s12035-014-8857-8

    Article  CAS  PubMed  Google Scholar 

  • Vakilzadeh G, Khodagholi F, Ghadiri T, Ghaemi A, Noorbakhsh F, Sharifzadeh M, Gorji A (2016) The effect of melatonin on behavioral, molecular, and histopathological changes in cuprizone model of demyelination. Mol Neurobiol 53:4675–4684. doi:10.1007/s12035-015-9404-y

    Article  CAS  PubMed  Google Scholar 

  • Venturini G (1973) Enzymic activities and sodium, potassium and copper concentrations in mouse brain and liver after cuprizone treatment in vivo. J Neurochem 21:1147–1151

    Article  CAS  PubMed  Google Scholar 

  • Wagenknecht N, Becker B, Scheld M, Beyer C, Clarner T, Hochstrasser T, Kipp M (2016) Thalamus degeneration and inflammation in two distinct multiple sclerosis animal models. J Mol Neurosci: MN. doi:10.1007/s12031-016-0790-z

    PubMed  Google Scholar 

  • Wakabayashi T (2002) Megamitochondria formation—physiology and pathology. J Cell Mol Med 6:497–538

    Article  CAS  PubMed  Google Scholar 

  • Werner SR, Saha JK, Broderick CL, Zhen EY, Higgs RE, Duffin KL, Smith RC (2010) Proteomic analysis of demyelinated and remyelinating brain tissue following dietary cuprizone administration. J Mol Neurosci 42:210–225. doi:10.1007/s12031-010-9354-9

    Article  CAS  PubMed  Google Scholar 

  • Zatta P et al (2005) Copper and zinc dismetabolism in the mouse brain upon chronic cuprizone treatment. Cell Mol Life Sci: CMLS 62:1502–1513. doi:10.1007/s00018-005-5073-8

    Article  CAS  PubMed  Google Scholar 

  • Zeldich E, Chen CD, Avila R, Medicetty S, Abraham CR (2015) The anti-aging protein klotho enhances remyelination following cuprizone-induced demyelination. J Mol Neurosci 57:185–196. doi:10.1007/s12031-015-0598-2

    Article  CAS  PubMed  Google Scholar 

  • Zendedel A, Beyer C, Kipp M (2013) Cuprizone-induced demyelination as a tool to study remyelination and axonal protection. J Mol Neurosci 51:567–572. doi:10.1007/s12031-013-0026-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank S. Wübbel, A. Baltruschat, B. Aschauer, B. Mosler, and S. Tost for the excellent technical assistance. The present work was supported by the Doktor Robert Pfleger–Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja Hochstrasser.

Ethics declarations

All experimental procedures were approved by the Review Board for the Care of Animal Subjects of the district government of Upper Bavaria (55.2-1-54-2532-73-15).

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hochstrasser, T., Exner, G.L., Nyamoya, S. et al. Cuprizone-Containing Pellets Are Less Potent to Induce Consistent Demyelination in the Corpus Callosum of C57BL/6 Mice. J Mol Neurosci 61, 617–624 (2017). https://doi.org/10.1007/s12031-017-0903-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-017-0903-3

Keywords

Navigation