Skip to main content

Advertisement

Log in

Guidelines for the Tetra-Primer ARMS–PCR Technique Development

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The tetra-primer amplification refractory mutation system–polymerase chain (ARMS–PCR) reaction is a simple and economical method to genotype single-nucleotide polymorphisms (SNPs). It uses four primers in a single PCR and is followed just by gel electrophoresis. However, the optimization step can be very hardworking and time-consuming. Hence, we propose to demonstrate and discuss critical steps for its development, in a way to provide useful information. Two SNPs that provided different amplification conditions were selected. DNA extraction methods, annealing temperatures, PCR cycles protocols, reagents, and primers concentration were also analyzed. The use of tetra-primer ARMS–PCR could be impaired for SNPs in DNA regions rich in cytosine and guanine and for samples with DNA not purified. The melting temperature was considered the factor of greater interference. However, small changes in the reagents concentration significantly affect the PCR, especially MgCl2. Balancing the inner primers band is also a key step. So, in order to balance the inner primers band, intensity is important to observe which one has the weakest band and promote its band by increasing its concentration. The use of tetra-primer ARMS–PCR attends the expectations of modern genomic research and allows the study of SNPs in a fast, reliable, and low-cost way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Collins, F. S., Morgan, M., & Patrinos, A. (2003). The Human Genome Project: lessons from large-scale biology. Science, 300(5617), 286–290.

    Article  CAS  Google Scholar 

  2. The International HapMap Consortium. (2005). A haplotype map of the human genome. Nature, 437(7063), 1299–1320.

    Article  Google Scholar 

  3. Shi, J., Wang, Y., & Huang, W. (2009). Development and application of genotyping technologies. Science in China, Series C: Life Sciences, 52(1), 17–23.

    Article  CAS  Google Scholar 

  4. Shastry, B. S. (2002). SNP alleles in human disease and evolution. Journal of Human Genetics, 47(11), 561–566.

    Article  CAS  Google Scholar 

  5. Rocha, D., Gut, I., Jeffereys, A. J., Kwok, P. Y., Brookes, A. J., & Chanock, S. J. (2006). Seventh international meeting on single nucleotide polymorphism and complex genome analysis: ever bigger scans and an increasingly variable genome. Human Genetics, 119(4), 451–456.

    Article  CAS  Google Scholar 

  6. Manolio, T. A., Brooks, L. D., & Collins, F. S. A. (2008). HapMap harvest of insights into the genetics of common disease. Journal of Clinical Investigation, 118(5), 1590–1605.

    Article  CAS  Google Scholar 

  7. Bui, M., & Liu, Z. (2009). Simple allele-discriminating PCR for cost-effective and rapid genotyping and mapping. Plant Methods, 5, 1. doi:10.1186/1746-4811-5-1.

    Article  Google Scholar 

  8. Feero, W. G., Guttmacher, A. E., & Collins, F. S. (2010). Genomic medicine—an updated primer. New England Journal of Medicine, 362(21), 2001–2011.

    Article  CAS  Google Scholar 

  9. Wang, W. P., Ni, K. Y., & Zhou, G. H. (2006). Approaches for SNP genotyping. Yi Chuan, 28(1), 117–126.

    Google Scholar 

  10. Shen, R., Fan, J. B., Campbell, D., Chang, W., Chen, J., Doucet, D., et al. (2005). High-throughput SNP genotyping on universal bead arrays. Mutation Research, 573(1–2), 70–82.

    Article  CAS  Google Scholar 

  11. Griffin, T. J., & Smith, L. M. (2000). Single-nucleotide polymorphism analysis by MALDI-TOF mass spectrometry. Trends in Biotechnology, 18(2), 77–84.

    Article  CAS  Google Scholar 

  12. Ahmadian, A., Ehn, M., & Hober, S. (2006). Pyrosequencing: History, biochemistry and future. Clinica Chimica Acta, 363(1–2), 83–94.

    Article  CAS  Google Scholar 

  13. Syvänen, A. C. (2005). Toward genome wide SNP genotyping. Nature Genetics, 37(Suppl), S5–S10.

    Article  Google Scholar 

  14. Chuang, L. Y., Yang, C. H., Tsui, K. H., Cheng, Y. H., Chang, P. L., Wen, C. H., et al. (2008). Restriction enzyme mining for SNPs in genomes. Anticancer Research, 28(4), 2001–2007.

    CAS  Google Scholar 

  15. Hamajima, N., Saito, T., Matsuo, K., & Tajima, K. (2002). Competitive amplification and unspecific amplification in polymerase chain reaction with confronting two-pair primers. Journal of Molecular Diagnostics, 4(2), 103–107.

    Article  CAS  Google Scholar 

  16. Ye, S., Dhillon, S., Ke, X., Collins, A. R., & Day, I. N. (2001). An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Research, 29, e88. doi:10.1093/nar/29.17.e88.

    Article  CAS  Google Scholar 

  17. Kwok, P. Y. (2001). Methods for genotype single nucleotide polymorphism. Annual Review of Genomics and Human Genetics, 2, 235–258.

    Article  CAS  Google Scholar 

  18. Newton, C. R., Graham, A., Heptinstall, L. E., Powell, S. J., Summers, C., Kalsheker, N., et al. (1989). Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Research, 17(7), 2503–2516.

    Article  CAS  Google Scholar 

  19. Little, S. (2001). Amplification-refractory mutation system (ARMS) analysis of point mutations. Current protocols Human Genet, vol 9.8 (Wiley Online Library): (pp. 1–12).

  20. Wangkumhang, P., Chaichoompu, K., Ngamphiw, C., Ruangrit, U., Chanprasert, J., Assawamakin, A., et al. (2007). WASP: a web-based allele-Specific PCR assay design tool decting SNPs and mutations. BMC Genomics, 8, 275.

    Article  Google Scholar 

  21. Rubio, M., Caranta, C., & Palloix, A. (2008). Functional markers for selection of potyvirus resistance alleles at the pvr2-eIF4E locus in pepper using tetra-primer ARMS-PCR. Genome, 51(9), 767–771.

    Article  CAS  Google Scholar 

  22. Chiapparino, E., Lee, D., & Donini, P. (2004). Genotyping single nucleotide polymorphisms in barley tetra-primer ARMS–PCR. Genome, 47(2), 414–420.

    Article  CAS  Google Scholar 

  23. Hubé, F., Reverdiau, P., Iochmann, S., & Gruel, Y. (2005). Improved PCR method for amplification of GC-rich DNA sequences. Molecular Biotechnology, 31(1), 81–84.

    Article  Google Scholar 

  24. McDowell, D. C., Burns, N. A., & Parkes, H. C. (1998). Localised sequence regions possessing high melting temperatures prevent the amplification of a DNA mimic in competitive PCR. Nucleic Acids Resarch, 26(14), 3340–3347.

    Article  CAS  Google Scholar 

  25. Henke, W., Herdel, K., Jung, K., Schnorr, D., & Loening, S. A. (1997). Betaine improves the PCR amplification of GC-rich DNA sequences. Nucleic Acids Research, 25(19), 3957–3958.

    Article  CAS  Google Scholar 

  26. Varadaraj, K., & Skinner, D. M. (1994). Denaturants or cosolvents improve the specificity of PCR amplification of a G + C-rich DNA using genetically engineered DNA polymerases. Gene, 140(1), 1–5.

    Article  CAS  Google Scholar 

  27. Garcés-Claver, A., Fellman, S. M., Gil-Ortega, R., Jahn, M., & Arnedo-Andrés, M. S. (2007). Identification, validation and survey of a single nucleotide polymorphism (SNP) associated with pungency in Capsicum spp. TAG Theoretical and Applied Genetics, 115(7), 907–916.

    Article  Google Scholar 

  28. Markoulatos, P., Siafakas, N., & Moncany, M. (2002). Multiplex polymerase chain reaction: A practical approach. Journal of Clinical Laboratory Analysis, 16(1), 47–51.

    Article  CAS  Google Scholar 

  29. Hohjoh, H., & Tokunaga, K. (2001). Allele-specific binding of the ubiquitous transcription factor OCT-1 to the functional single nucleotide polymorphism (SNP) sites in the tumor necrosis factor-alpha gene (TNFA) promoter. Genes and Immunity, 2(2), 105–109.

    Article  CAS  Google Scholar 

  30. Baris, I., Etlik, O., Koksal, V., & Arican-Baris, S. T. (2010). Rapid diagnosis of spinal muscular atrophy using tetra-primer ARMS PCR assay: Simultaneous detection of SMN1 and SMN2 deletion. Molecular and Cellular Probes, 24(3), 138–141.

    Article  CAS  Google Scholar 

  31. Chai, J., Xiong, Q., Zhang, P. P., Shang, Y. Y., Zheng, R., Peng, J., et al. (2010). Evidence for a new allele at the SERCA1 locus affecting pork meat quality in part through the imbalance of Ca2+ homeostasis. Molecular Biology Reports, 37(1), 613–619.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação Hermínio Ometto/FHO and PIBIC/CNPq.

Conflict of interests

The authors declare that there are no conflicts of interest.

Ethical standard

This study was approved by the Committee of Ethic in Research and Scientific Merit of the Centro Universitário Herminio Ometto/UNIARARAS, number 744/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila Andréa de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medrano, R.F.V., de Oliveira, C.A. Guidelines for the Tetra-Primer ARMS–PCR Technique Development. Mol Biotechnol 56, 599–608 (2014). https://doi.org/10.1007/s12033-014-9734-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9734-4

Keywords

Navigation