Skip to main content

Advertisement

Log in

Generation of GTKO Diannan Miniature Pig Expressing Human Complementary Regulator Proteins hCD55 and hCD59 via T2A Peptide-Based Bicistronic Vectors and SCNT

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Pig-to-human organ transplantation has drawn attention in recent years due to the potential use of pigs as an alternative source of human donor organs. While GGTA1 knockout (GTKO) can protect xenografts from hyperacute rejection, complement-dependent cytotoxicity might still contribute to this type of rejection. To prolong the xenograft survival, we utilized a T2A-mediated pCMV-hCD55-T2A-hCD59-Neo vector and transfected the plasmid into GTKO Diannan miniature pig fetal fibroblasts. After G418 selection combined with single-cell cloning culture, four colonies were obtained, and three of these were successfully transfected with the hCD55 and hCD59. One of the three colonies was selected as donor cells for somatic cell nuclear transfer (SCNT). Then, the reconstructed embryos were transferred into eight recipient gilts, resulting in four pregnancies. Three of the pregnant gilts delivered, yielding six piglets. Only one piglet carried hCD55 and hCD59 genetic modification. The expression levels of the GGTA1, hCD55, and hCD59 in the tissues and fibroblasts of the piglet were determined by q-PCR, fluorescence microscopy, immunohistochemical staining, and western blotting analyses. The results showed the absence of GGTA1 and the coexpression of the hCD55 and hCD59. However, the mRNA expression levels of hCD55 and hCD59 in the GTKO/hCD55/hCD59 pig fibroblasts were lower than that in human 293T cells, which may be caused by low copy number and/or CMV promoter methylation. Furthermore, we performed human complement-mediated cytolysis assays using human serum solutions from 0 to 60%. The result showed that the fibroblasts of this triple-gene modified piglet had greater survival rates than that of wild-type and GTKO controls. Taken together, these results indicate that T2A-mediated polycistronic vector system combined with SCNT can effectively generate multiplex genetically modified pigs, additional hCD55 and hCD59 expression on top of a GTKO genetic background markedly enhance the protective effect towards human serum-mediated cytolysis than those of GTKO alone. Thus, we suggest that GTKO/hCD55/hCD59 triple-gene-modified Diannan miniature pig will be a more eligible donor for xenotransplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Klymiuk, N., Aigner, B., Brem, G., & Wolf, E. (2010). Genetic modification of pigs as organ donors for xenotransplantation. Molecular Reproduction and Development, 77, 209–221.

    CAS  PubMed  Google Scholar 

  2. Xiang, Y.-T., Meng, L.-R., & Ungvari, G. S. (2016). China to halt using executed prisoners’ organs for transplants: A step in the right direction in medical ethics. Journal of Medical Ethics, 42, 10.

    Article  PubMed  Google Scholar 

  3. Pan, W., Zhang, G., Qing, Y., Li, H., Cheng, W., Wang, X., et al. (2015). evaluation of cloning efficiency based on the production of cloned diannan miniature pigs. RRJMB, 4, 1–7.

    Article  Google Scholar 

  4. Chen, F. X., Tang, J., Li, N. L., Shen, B. H., Zhou, Y., Xie, J., et al. (2003). Novel SLA class I alleles of Chinese pig strains and their significance in xenotransplantation. Cell Research, 13, 285–294.

    Article  CAS  PubMed  Google Scholar 

  5. Cheng, W., Zhao, H., Yu, H., Xin, J., Wang, J., Zeng, L., et al. (2016). Efficient generation of GGTA1-null Diannan miniature pigs using TALENs combined with somatic cell nuclear transfer. Reproductive Biology and Endocrinology, 14, 77.

    Article  CAS  PubMed  Google Scholar 

  6. Ekser, B., Ezzelarab, M., Hara, H., van der Windt, D. J., Wijkstrom, M., Bottino, R., et al. (2012). Clinical xenotransplantation: The next medical revolution? The lancet, 379, 672–683.

    Article  Google Scholar 

  7. Yang, Y. G., & Sykes, M. (2007). Xenotransplantation: Current status and a perspective on the future. Nature Reviews Immunology, 7, 519–531.

    Article  CAS  PubMed  Google Scholar 

  8. Phelps, C. J., Koike, C., Vaught, T. D., Boone, J., Wells, K. D., Chen, S. H., et al. (2003). Production of alpha 1,3-galactosyltransferase-deficient pigs. Science, 299, 411–414.

    Article  CAS  PubMed  Google Scholar 

  9. Lai, L., Kolber-Simonds, D., Park, K. W., Cheong, H. T., Greenstein, J. L., Im, G. S., et al. (2002). Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science, 295, 1089–1092.

    Article  CAS  PubMed  Google Scholar 

  10. Cowan, P. J., Aminian, A., Barlow, H., Brown, A. A., Chen, C. G., Fisicaro, N., et al. (2000). Renal xenografts from triple-transgenic pigs are not hyperacutely rejected but cause coagulopathy in non-immunosuppressed baboons. Transplantation, 69, 2504–2515.

    Article  CAS  PubMed  Google Scholar 

  11. Ekser, B., Kumar, G., Veroux, M., & Cooper, D. K. (2011). Therapeutic issues in the treatment of vascularized xenotransplants using gal-knockout donors in nonhuman primates. Current Opinion in Organ Transplantation, 16, 222–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dor, F. J., Kuwaki, K., Tseng, Y. L., Shimizu, A., Houser, S. L., Yamada, K., et al. (2005). Potential of aspirin to inhibit thrombotic microangiopathy in alpha 1,3-galactosyltransferase gene-knockout pig hearts after transplantation in baboons. Transplantation Proceedings, 37, 489–490.

    Article  CAS  PubMed  Google Scholar 

  13. Kuwaki, K., Tseng, Y. L., Dor, F. J., Shimizu, A., Houser, S. L., Sanderson, T. M., et al. (2005). Heart transplantation in baboons using alpha 1,3-galactosyltransferase gene-knockout pigs as donors: Initial experience. Nature Medicine, 11, 29–31.

    Article  CAS  PubMed  Google Scholar 

  14. Tseng, Y. L., Kuwaki, K., Dor, F. J., Shimizu, A., Houser, S., Hisashi, Y., et al. (2005). Alpha 1,3-galactosyltransferase gene-knockout pig heart transplantation in baboons with survival approaching 6 months. Transplantation, 80, 1493–1500.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, G., Qian, H., Starzl, T., Sun, H., Garcia, B., Wang, X., et al. (2005). Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys. Nature Medicine, 11, 1295–1298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schroder, C., Pfeiffer, S., Wu, G., Zorn, G. L. 3rd, Ding, L., Allen, C., et al. (2003). Effect of complement fragment 1 esterase inhibition on survival of human decay-accelerating factor pig lungs perfused with human blood. The Journal of Heart and Lung Transplantation: The Official Publication of the International Society for Heart Transplantation, 22, 1365–1375.

    Article  Google Scholar 

  17. Burdorf, L., Stoddard, T., Zhang, T., Rybak, E., Riner, A., Avon, C., et al. (2014). Expression of human CD46 modulates inflammation associated with GalTKO lung xenograft injury. American Journal of Transplantation: Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 14, 1084–1095.

    Article  CAS  Google Scholar 

  18. Wiebe, K., Poeling, J., Meliss, R., Loss, M., Winkler, M., Steinhoff, G., et al. (2001). Improved function of transgenic pig lungs in ex vivo lung perfusion with human blood. Transplantation Proceedings, 33, 773–774.

    Article  CAS  PubMed  Google Scholar 

  19. Westall, G. P., Levvey, B. J., Salvaris, E., Gooi, J., Marasco, S., Rosenfeldt, F., et al. (2013). Sustained function of genetically modified porcine lungs in an ex vivo model of pulmonary xenotransplantation. The Journal of Heart and Lung Transplantation: The official Publication of the International Society for Heart Transplantation, 32, 1123–1130.

    Article  Google Scholar 

  20. Daggett, C. W., Yeatman, M., Lodge, A. J., Chen, E. P., Van Trigt, P., Byrne, G. W., et al. (1997). Swine lungs expressing human complement-regulatory proteins are protected against acute pulmonary dysfunction in a human plasma perfusion model. The Journal of Thoracic and Cardiovascular Surgery, 113, 390–398.

    Article  CAS  PubMed  Google Scholar 

  21. Kulick, D. M., Salerno, C. T., Dalmasso, A. P., Park, S. J., Paz, M. G., Fodor, W. L., et al. (2000). Transgenic swine lungs expressing human CD59 are protected from injury in a pig-to-human model of xenotransplantation. The Journal of Thoracic and Cardiovascular Surgery, 119, 690–699.

    Article  CAS  PubMed  Google Scholar 

  22. Rosengard, A. M., Cary, N. R., Langford, G. A., Tucker, A. W., Wallwork, J., & White, D. J. (1995). Tissue expression of human complement inhibitor, decay-accelerating factor, in transgenic pigs. A potential approach for preventing xenograft rejection. Transplantation, 59, 1325–1333.

    Article  CAS  PubMed  Google Scholar 

  23. Rosengard, A. M., Cary, N., Horsley, J., Belcher, C., Langford, G., Cozzi, E., et al. (1995). Endothelial expression of human decay accelerating factor in transgenic pig tissue: A potential approach for human complement inactivation in discordant xenografts. Transplantation Proceedings, 27, 326

    CAS  PubMed  Google Scholar 

  24. Ramirez, P., Montoya, M. J., Rios, A., Garcia Palenciano, C., Majado, M., Chavez, R., et al. (2005). Prevention of hyperacute rejection in a model of orthotopic liver xenotransplantation from pig to baboon using polytransgenic pig livers (CD55, CD59, and H-transferase). Transplantation Proceedings, 37, 4103–4106.

    Article  CAS  PubMed  Google Scholar 

  25. Huang, J., Gou, D., Zhen, C., Jiang, D., Mao, X., Li, W., et al. (2001). Protection of xenogeneic cells from human complement-mediated lysis by the expression of human DAF, CD59 and MCP. FEMS Immunology and Medical Microbiology, 31, 203–209.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou, C. Y., McInnes, E., Copeman, L., Langford, G., Parsons, N., Lancaster, R., et al. (2005). Transgenic pigs expressing human CD59, in combination with human membrane cofactor protein and human decay-accelerating factor. Xenotransplantation, 12, 142–148.

    Article  PubMed  Google Scholar 

  27. Le Bas-Bernardet, S., Tillou, X., Poirier, N., Dilek, N., Chatelais, M., Devalliere, J., et al. (2011). Xenotransplantation of galactosyl-transferase knockout, CD55, CD59, CD39, and fucosyl-transferase transgenic pig kidneys into baboons. Transplantation Proceedings, 43, 3426–3430.

    Article  CAS  PubMed  Google Scholar 

  28. Jeong, Y.-H., Park, C.-H., Jang, G.-H., Jeong, Y.-I., Hwang, I.-S., Jeong, Y., et al. (2013). Production of multiple transgenic Yucatan miniature pigs expressing human complement regulatory factors, human CD55, CD59, and H-transferase genes. PLoS ONE, 8, e63241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ibrahimi, A., Vande Velde, G., Reumers, V., Toelen, J., Thiry, I., Vandeputte, C., et al. (2009). Highly efficient multicistronic lentiviral vectors with peptide 2A sequences. Human Gene Therapy, 20, 845–860.

    Article  CAS  PubMed  Google Scholar 

  30. Szymczak, A. L., Workman, C. J., Wang, Y., Vignali, K. M., Dilioglou, S., Vanin, E. F., et al. (2004). Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nature Biotechnology, 22, 589–594.

    Article  CAS  PubMed  Google Scholar 

  31. Chan, H. Y., Xing, V. S., Kraus, X., Yap, P., Ng, S. P., P., et al (2011). Comparison of IRES and F2A-based locus-specific multicistronic expression in stable mouse lines. PLoS ONE, 6, e28885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Szymczak, A. L., & Vignali, D. A. (2005). Development of 2A peptide-based strategies in the design of multicistronic vectors. Expert Opinion on Biological Therapy, 5, 627–638.

    Article  CAS  PubMed  Google Scholar 

  33. Di Santo, R., Aboulhouda, S., & Weinberg, D. E. (2016). The fail-safe mechanism of post-transcriptional silencing of unspliced HAC1 mRNA. eLife, 5, e20069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wei, H., Qing, Y., Pan, W., Zhao, H., Li, H., Cheng, W., et al. (2013). Comparison of the efficiency of Banna miniature inbred pig somatic cell nuclear transfer among different donor cells. PLoS One, 8, e57728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. D’Haene, B., Vandesompele, J., & Hellemans, J. (2010). Accurate and objective copy number profiling using real-time quantitative PCR. Methods, 50, 262–270.

    Article  CAS  PubMed  Google Scholar 

  36. Kuwaki, K., Tseng, Y. L., Dor, F. J., Shimizu, A., Houser, S. L., Sanderson, T. M., et al. (2005). Heart transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as donors: Initial experience. Nature Medicine, 11, 29–31.

    Article  CAS  PubMed  Google Scholar 

  37. Azimzadeh, A. M., Kelishadi, S. S., Ezzelarab, M. B., Singh, A. K., Stoddard, T., Iwase, H., et al. (2015). Early graft failure of GalTKO pig organs in baboons is reduced by expression of a human complement pathway-regulatory protein. Xenotransplantation, 22, 310–316.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Harris, D. G., Quinn, K. J., French, B. M., Schwartz, E., Kang, E., Dahi, S., et al. (2015). Meta-analysis of the independent and cumulative effects of multiple genetic modifications on pig lung xenograft performance during ex vivo perfusion with human blood. Xenotransplantation, 22, 102–111.

    Article  PubMed  Google Scholar 

  39. Chen, Y., Stewart, J. M., Gunthart, M., Hawthorne, W. J., Salvaris, E. J., O’Connell, P. J., et al. (2014). Xenoantibody response to porcine islet cell transplantation using GTKO, CD55, CD59, and fucosyltransferase multiple transgenic donors. Xenotransplantation, 21, 244–253.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Torres, V., Barra, L., Garces, F., Ordenes, K., Leal-Ortiz, S., Garner, C. C., et al. (2010). A bicistronic lentiviral vector based on the 1D/2A sequence of foot-and-mouth disease virus expresses proteins stoichiometrically. Journal of Biotechnology, 146, 138–142.

    Article  CAS  PubMed  Google Scholar 

  41. Deng, W., Yang, D., Zhao, B., Ouyang, Z., Song, J., Fan, N., et al. (2011). Use of the 2A peptide for generation of multi-transgenic pigs through a single round of nuclear transfer. PLoS ONE, 6, e19986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hurh, S., Cho, B., You, D. J., Kim, H., Lee, E. M., Lee, S. H., et al. (2013). Expression analysis of combinatorial genes using a bi-cistronic T2A expression system in porcine fibroblasts. PLoS ONE, 8, e70486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brooks, A. R., Harkins, R. N., Wang, P., Qian, H. S., Liu, P., & Rubanyi, G. M. (2004). Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle. The Journal of Gene Medicine, 6, 395–404.

    Article  CAS  PubMed  Google Scholar 

  44. Kong, Q., Wu, M., Huan, Y., Zhang, L., Liu, H., Bou, G., et al. (2009). Transgene expression is associated with copy number and cytomegalovirus promoter methylation in transgenic pigs. PLoS ONE, 4, e6679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Eszterhas, S. K., Bouhassira, E. E., Martin, D. I., & Fiering, S. (2002). Transcriptional interference by independently regulated genes occurs in any relative arrangement of the genes and is influenced by chromosomal integration position. Molecular and Cellular Biology, 22, 469–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kong, Q., Hai, T., Ma, J., Huang, T., Jiang, D., Xie, B., et al. (2014). Rosa26 locus supports tissue-specific promoter driving transgene expression specifically in pig. PLoS ONE, 9, e107945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tang, X., Wang, G., Liu, X., Han, X., Li, Z., Ran, G., et al. (2015). Overexpression of porcine lipoprotein-associated phospholipase A2 in swine. Biochemical and Biophysical Research Communications, 465, 507–511.

    Article  CAS  PubMed  Google Scholar 

  48. Tang, X., Wang, G., Liu, X., Han, X., Li, Z., Ran, G., et al. (2015). Overexpression of porcine lipoprotein-associated phospholipase A2 in swine. Biochemical and Biophysical Research, 465, 507–511.

    Article  CAS  Google Scholar 

  49. Bottino, R., Wijkstrom, M., van der Windt, D. J., Hara, H., Ezzelarab, M., Murase, N., et al. (2014). Pig-to-monkey islet xenotransplantation using multi-transgenic pigs. American Journal of Transplantation: Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 14, 2275–2287.

    Article  CAS  Google Scholar 

  50. Yazaki, S., Iwamoto, M., Onishi, A., Miwa, Y., Hashimoto, M., Oishi, T., et al. (2012). Production of cloned pigs expressing human thrombomodulin in endothelial cells. Xenotransplantation, 19, 82–91.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Major Program on Basic Research Projects of Yunnan Province (Grant No. 2014FC006), the National Genetically Modified Organisms Breeding Major Projects (Grant No. 2016ZX08009-003-006) and the National Natural Science Foundation of China (Grant No. 31560637).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang, Hong-Ye Zhao or Hong-Jiang Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Liu, J., Yuan, Z. et al. Generation of GTKO Diannan Miniature Pig Expressing Human Complementary Regulator Proteins hCD55 and hCD59 via T2A Peptide-Based Bicistronic Vectors and SCNT. Mol Biotechnol 60, 550–562 (2018). https://doi.org/10.1007/s12033-018-0091-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-0091-6

Keywords

Navigation