Skip to main content
Log in

The Yin–Yang of Dendrite Morphology: Unity of Actin and Microtubules

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Actin and microtubules (MT) are targets of numerous molecular pathways that control neurite outgrowth. To generate a neuronal protrusion, coordinated structural changes of the actin and MT cytoskeletons must occur. Neurite formation occurs when actin filaments (F-actin) are destabilized, filopodia are extended, and MTs invade filopodia. This process results in either axon or dendrite formation. Axonal branching involves interplay between F-actin and MTs, with F-actin and MTs influencing polymerization, stabilization, and maintenance of each other. Our knowledge of the mechanisms regulating development of the axon, however, far eclipses our understanding of dendritic development and branching. The two classes of neurites, while fundamentally similar in their ability to elongate and branch, dramatically differ in growth rate, orientation of polarized MT bundles, and mechanisms that initiate branching. In this review, we focus on how F-actin, MTs, and proteins that link the two cytoskeletons coordinate to specifically initiate dendritic events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Geppert M, Sudhof TC (1998) RAB3 and synaptotagmin: the yin and yang of synaptic membrane fusion. Annu Rev Neurosci 21:75–95

    Article  PubMed  CAS  Google Scholar 

  2. Hardingham GE, Bading H (2003) The yin and yang of NMDA receptor signalling. Trends Neurosci 26:81–89

    Article  PubMed  CAS  Google Scholar 

  3. Dutt T, Toh CH (2008) The yin–yang of thrombin and activated protein C. Br J Haematol 140:505–515

    Article  PubMed  CAS  Google Scholar 

  4. Griffith LM, Pollard TD (1978) Evidence for actin filament-microtubule interaction mediated by microtubule-associated proteins. J Cell Biol 78:958–965

    Article  PubMed  CAS  Google Scholar 

  5. Schliwa M, van Blerkom J (1981) Structural interaction of cytoskeletal components. J Cell Biol 90:222–235

    Article  PubMed  CAS  Google Scholar 

  6. Langford GM (1995) Actin- and microtubule-dependent organelle motors: interrelationships between the two motility systems. Curr Opin Cell Biol 7:82–88

    Article  PubMed  CAS  Google Scholar 

  7. Huang JD, Brady ST, Richards BW, Stenolen D, Resau JH, Copeland NG, Jenkins NA (1999) Direct interaction of microtubule- and actin-based transport motors. Nature 397:267–270

    Article  PubMed  CAS  Google Scholar 

  8. Griffith LM, Pollard TD (1982) The interaction of actin filaments with microtubules and microtubule-associated proteins. J Biol Chem 257:9143–9151

    PubMed  CAS  Google Scholar 

  9. Euteneuer U, Schliwa M (1985) Evidence for an involvement of actin in the positioning and motility of centrosomes. J Cell Biol 101:96–103

    Article  PubMed  CAS  Google Scholar 

  10. Edson K, Weisshaar B, Matus A (1993) Actin depolymerisation induces process formation on MAP2-transfected non-neuronal cells. Development 117:689–700

    PubMed  CAS  Google Scholar 

  11. Pedrotti B, Colombo R, Islam K (1994) Microtubule associated protein MAP1A is an actin-binding and crosslinking protein. Cell Motil Cytoskelet 29:110–116

    Article  CAS  Google Scholar 

  12. Hely TA, Willshaw DJ (1998) Short-term interactions between microtubules and actin filaments underlie long-term behaviour in neuronal growth cones. Proc Biol Sci 265:1801–1807

    Article  PubMed  CAS  Google Scholar 

  13. Wang LJ, Colella R, Roisen FJ (1998) Ganglioside GM1 alters neuronal morphology by modulating the association of MAP2 with microtubules and actin filaments. Brain Res Dev Brain Res 105:227–239

    Article  PubMed  CAS  Google Scholar 

  14. Rochlin MW, Dailey ME, Bridgman PC (1999) Polymerizing microtubules activate site-directed F-actin assembly in nerve growth cones. Mol Biol Cell 10:2309–2327

    PubMed  CAS  Google Scholar 

  15. Bentivoglio M (1998) Life and Discoveries of Santiago Ramón y Cajal. In.

  16. Llinas RR (2003) The contribution of Santiago Ramon y Cajal to functional neuroscience. Nat Rev Neurosci 4:77–80

    Article  PubMed  CAS  Google Scholar 

  17. Mattson MP (1999) Establishment and plasticity of neuronal polarity. J Neurosci Res 57:577–589

    Article  PubMed  CAS  Google Scholar 

  18. Yoshimura T, Arimura N, Kaibuchi K (2006) Signaling networks in neuronal polarization. J Neurosci 26:10626–10630

    Article  PubMed  CAS  Google Scholar 

  19. Jan YN, Jan LY (2003) The control of dendrite development. Neuron 40:229–242

    Article  PubMed  CAS  Google Scholar 

  20. Shi SH, Cheng T, Jan LY, Jan YN (2004) APC and GSK-3beta are involved in mPar3 targeting to the nascent axon and establishment of neuronal polarity. Curr Biol 14:2025–2032

    Article  PubMed  CAS  Google Scholar 

  21. Arimura N, Kaibuchi K (2007) Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci 8:194–205

    Article  PubMed  CAS  Google Scholar 

  22. Bradke F, Dotti CG (1999) The role of local actin instability in axon formation. Science 283:1931–1934

    Article  PubMed  CAS  Google Scholar 

  23. Bradke F, Dotti CG (2000a) Differentiated neurons retain the capacity to generate axons from dendrites. Curr Biol 10:1467–1470

    Article  PubMed  CAS  Google Scholar 

  24. Bradke F, Dotti CG (2000b) Establishment of neuronal polarity: lessons from cultured hippocampal neurons. Curr Opin Neurobiol 10:574–581

    Article  PubMed  CAS  Google Scholar 

  25. Yuasa-Kawada J, Suzuki R, Kano F, Ohkawara T, Murata M, Noda M (2003) Axonal morphogenesis controlled by antagonistic roles of two CRMP subtypes in microtubule organization. Eur J Neurosci 17:2329–2343

    Article  PubMed  Google Scholar 

  26. Gomis-Ruth S, Wierenga CJ, Bradke F (2008) Plasticity of polarization: changing dendrites into axons in neurons integrated in neuronal circuits. Curr Biol 18:992–1000

    Article  PubMed  CAS  Google Scholar 

  27. Lafont F, Rouget M, Rousselet A, Valenza C, Prochiantz A (1993) Specific responses of axons and dendrites to cytoskeleton perturbations: an in vitro study. J Cell Sci 104(Pt 2):433–443

    PubMed  Google Scholar 

  28. Dehmelt L, Halpain S (2004) Actin and microtubules in neurite initiation: are MAPs the missing link? J Neurobiol 58:18–33

    Article  PubMed  CAS  Google Scholar 

  29. Witte H, Neukirchen D, Bradke F (2008) Microtubule stabilization specifies initial neuronal polarization. J Cell Biol 180:619–632

    Article  PubMed  CAS  Google Scholar 

  30. Zheng J, Lamoureux P, Santiago V, Dennerll T, Buxbaum RE, Heidemann SR (1991) Tensile regulation of axonal elongation and initiation. J Neurosci 11:1117–1125

    PubMed  CAS  Google Scholar 

  31. Chamak B, Prochiantz A (1989) Influence of extracellular matrix proteins on the expression of neuronal polarity. Development 106:483–491

    PubMed  CAS  Google Scholar 

  32. Burnette DT, Schaefer AW, Ji L, Danuser G, Forscher P (2007) Filopodial actin bundles are not necessary for microtubule advance into the peripheral domain of Aplysia neuronal growth cones. Nat Cell Biol 9:1360–1369

    Article  PubMed  CAS  Google Scholar 

  33. Dent EW, Kwiatkowski AV, Mebane LM, Philippar U, Barzik M, Rubinson DA, Gupton S, Van Veen JE, Furman C, Zhang J, Alberts AS, Mori S, Gertler FB (2007) Filopodia are required for cortical neurite initiation. Nat Cell Biol 9:1347–1359

    Article  PubMed  CAS  Google Scholar 

  34. Forscher P, Smith SJ (1988) Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J Cell Biol 107:1505–1516

    Article  PubMed  CAS  Google Scholar 

  35. Schaefer AW, Kabir N, Forscher P (2002) Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones. J Cell Biol 158:139–152

    Article  PubMed  CAS  Google Scholar 

  36. Goode BL, Drubin DG, Barnes G (2000) Functional cooperation between the microtubule and actin cytoskeletons. Curr Opin Cell Biol 12:63–71

    Article  PubMed  CAS  Google Scholar 

  37. Cingolani LA, Goda Y (2008) Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci 9:344–356

    Article  PubMed  CAS  Google Scholar 

  38. Dailey ME, Smith SJ (1996) The dynamics of dendritic structure in developing hippocampal slices. J Neurosci 16:2983–2994

    PubMed  CAS  Google Scholar 

  39. Scott EK, Luo L (2001) How do dendrites take their shape? Nat Neurosci 4:359–365

    Article  PubMed  CAS  Google Scholar 

  40. Caceres A, Payne MR, Binder LI, Steward O (1983) Immunocytochemical localization of actin and microtubule-associated protein MAP2 in dendritic spines. Proc Natl Acad Sci USA 80:1738–1742

    Article  PubMed  CAS  Google Scholar 

  41. Star EN, Kwiatkowski DJ, Murthy VN (2002) Rapid turnover of actin in dendritic spines and its regulation by activity. Nat Neurosci 5:239–246

    Article  PubMed  CAS  Google Scholar 

  42. Honkura N, Matsuzaki M, Noguchi J, Ellis-Davies GC, Kasai H (2008) The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57:719–729

    Article  PubMed  CAS  Google Scholar 

  43. Kirschner M, Mitchison T (1986) Beyond self-assembly: from microtubules to morphogenesis. Cell 45:329–342

    Article  PubMed  CAS  Google Scholar 

  44. McAllister AK (2000) Cellular and molecular mechanisms of dendrite growth. Cereb Cortex 10:963–973

    Article  PubMed  CAS  Google Scholar 

  45. Baas PW, Black MM, Banker GA (1989) Changes in microtubule polarity orientation during the development of hippocampal neurons in culture. J Cell Biol 109:3085–3094

    Article  PubMed  CAS  Google Scholar 

  46. Goldstein LS, Yang Z (2000) Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu Rev Neurosci 23:39–71

    Article  PubMed  CAS  Google Scholar 

  47. Vouyiouklis DA, Brophy PJ (1993) Microtubule-associated protein MAP1B expression precedes the morphological differentiation of oligodendrocytes. J Neurosci Res 35:257–267

    Article  PubMed  CAS  Google Scholar 

  48. Calvert RA (1995) Changes in microtubule-associated protein IB during development of the nervous system. Biochem Soc Trans 23:47–49

    PubMed  CAS  Google Scholar 

  49. Vandecandelaere A, Pedrotti B, Utton MA, Calvert RA, Bayley PM (1996) Differences in the regulation of microtubule dynamics by microtubule-associated proteins MAP1B and MAP2. Cell Motil Cytoskeleton 35:134–146

    Article  PubMed  CAS  Google Scholar 

  50. Salinas PC (1999) Wnt factors in axonal remodelling and synaptogenesis. Biochem Soc Symp 65:101–109

    PubMed  CAS  Google Scholar 

  51. Cueille N, Blanc CT, Popa-Nita S, Kasas S, Catsicas S, Dietler G, Riederer BM (2007) Characterization of MAP1B heavy chain interaction with actin. Brain Res Bull 71:610–618

    Article  PubMed  CAS  Google Scholar 

  52. Dehmelt L, Nalbant P, Steffen W, Halpain S (2006) A microtubule-based, dynein-dependent force induces local cell protrusions: Implications for neurite initiation. Brain Cell Biol 35:39–56

    Article  PubMed  CAS  Google Scholar 

  53. Bouquet C, Ravaille-Veron M, Propst F, Nothias F (2007) MAP1B coordinates microtubule and actin filament remodeling in adult mouse Schwann cell tips and DRG neuron growth cones. Mol Cell Neurosci 36:235–247

    Article  PubMed  CAS  Google Scholar 

  54. Gonzalez-Billault C, Jimenez-Mateos EM, Caceres A, Diaz-Nido J, Wandosell F, Avila J (2004) Microtubule-associated protein 1B function during normal development, regeneration, and pathological conditions in the nervous system. J Neurobiol 58:48–59

    Article  PubMed  CAS  Google Scholar 

  55. Szebenyi G, Bollati F, Bisbal M, Sheridan S, Faas L, Wray R, Haferkamp S, Nguyen S, Caceres A, Brady ST (2005) Activity-driven dendritic remodeling requires microtubule-associated protein 1A. Curr Biol 15:1820–1826

    Article  PubMed  CAS  Google Scholar 

  56. Bernhardt R, Huber G, Matus A (1985) Differences in the developmental patterns of three microtubule-associated proteins in the rat cerebellum. J Neurosci 5:977–991

    PubMed  CAS  Google Scholar 

  57. Harada A, Teng J, Takei Y, Oguchi K, Hirokawa N (2002) MAP2 is required for dendrite elongation, PKA anchoring in dendrites, and proper PKA signal transduction. J Cell Biol 158:541–549

    Article  PubMed  CAS  Google Scholar 

  58. Morales M, Fifkova E (1989) Distribution of MAP2 in dendritic spines and its colocalization with actin. An immunogold electron-microscope study. Cell Tissue Res 256:447–456

    Article  PubMed  CAS  Google Scholar 

  59. Roger B, Al-Bassam J, Dehmelt L, Milligan RA, Halpain S (2004) MAP2c, but not tau, binds and bundles F-actin via its microtubule binding domain. Curr Biol 14:363–371

    Article  PubMed  CAS  Google Scholar 

  60. Hely TA, Graham B, Ooyen AV (2001) A computational model of dendrite elongation and branching based on MAP2 phosphorylation. J Theor Biol 210:375–384

    Article  PubMed  CAS  Google Scholar 

  61. Huang J, Furuya A, Furuichi T (2007) Very-KIND, a KIND domain containing RasGEF, controls dendrite growth by linking Ras small GTPases and MAP2. J Cell Biol 179:539–552

    Article  PubMed  CAS  Google Scholar 

  62. Barth AI, Caro-Gonzalez HY, Nelson WJ (2008) Role of adenomatous polyposis coli (APC) and microtubules in directional cell migration and neuronal polarization. Semin Cell Dev Biol 19:245–251

    PubMed  CAS  Google Scholar 

  63. Votin V, Nelson WJ, Barth AI (2005) Neurite outgrowth involves adenomatous polyposis coli protein and beta-catenin. J Cell Sci 118:5699–5708

    Article  PubMed  CAS  Google Scholar 

  64. Collin L, Schlessinger K, Hall A (2008) APC nuclear membrane association and microtubule polarity. Biol Cell 100:243–252

    Article  PubMed  CAS  Google Scholar 

  65. Moseley JB, Bartolini F, Okada K, Wen Y, Gundersen GG, Goode BL (2007) Regulated binding of adenomatous polyposis coli protein to actin. J Biol Chem 282:12661–12668

    Article  PubMed  CAS  Google Scholar 

  66. Watanabe T, Wang S, Noritake J, Sato K, Fukata M, Takefuji M, Nakagawa M, Izumi N, Akiyama T, Kaibuchi K (2004) Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. Dev Cell 7:871–883

    Article  PubMed  CAS  Google Scholar 

  67. Fukata M, Watanabe T, Noritake J, Nakagawa M, Yamaga M, Kuroda S, Matsuura Y, Iwamatsu A, Perez F, Kaibuchi K (2002) Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109:873–885

    Article  PubMed  CAS  Google Scholar 

  68. Vitre B, Coquelle FM, Heichette C, Garnier C, Chretien D, Arnal I (2008) EB1 regulates microtubule dynamics and tubulin sheet closure in vitro. Nat Cell Biol 10:415–421

    Article  PubMed  CAS  Google Scholar 

  69. Su LK, Burrell M, Hill DE, Gyuris J, Brent R, Wiltshire R, Trent J, Vogelstein B, Kinzler KW (1995) APC binds to the novel protein EB1. Cancer Res 55:2972–2977

    PubMed  CAS  Google Scholar 

  70. Etienne-Manneville S, Manneville JB, Nicholls S, Ferenczi MA, Hall A (2005) Cdc42 and Par6-PKCzeta regulate the spatially localized association of Dlg1 and APC to control cell polarization. J Cell Biol 170:895–901

    Article  PubMed  CAS  Google Scholar 

  71. Wu XS, Tsan GL, Hammer JA 3rd (2005) Melanophilin and myosin Va track the microtubule plus end on EB1. J Cell Biol 171:201–207

    Article  PubMed  CAS  Google Scholar 

  72. Nakagawa H, Koyama K, Murata Y, Morito M, Akiyama T, Nakamura Y (2000) EB3, a novel member of the EB1 family preferentially expressed in the central nervous system, binds to a CNS-specific APC homologue. Oncogene 19:210–216

    Article  PubMed  CAS  Google Scholar 

  73. Stepanova T, Slemmer J, Hoogenraad CC, Lansbergen G, Dortland B, De Zeeuw CI, Grosveld F, van Cappellen G, Akhmanova A, Galjart N (2003) Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein). J Neurosci 23:2655–2664

    PubMed  CAS  Google Scholar 

  74. Jefferson JJ, Leung CL, Liem RK (2004) Plakins: goliaths that link cell junctions and the cytoskeleton. Nat Rev Mol Cell Biol 5:542–553

    Article  PubMed  CAS  Google Scholar 

  75. Gao FB, Brenman JE, Jan LY, Jan YN (1999) Genes regulating dendritic outgrowth, branching, and routing in Drosophila. Genes Dev 13:2549–2561

    Article  PubMed  CAS  Google Scholar 

  76. Sun D, Leung CL, Liem RK (2001) Characterization of the microtubule binding domain of microtubule actin crosslinking factor (MACF): identification of a novel group of microtubule associated proteins. J Cell Sci 114:161–172

    PubMed  CAS  Google Scholar 

  77. Subramanian A, Prokop A, Yamamoto M, Sugimura K, Uemura T, Betschinger J, Knoblich JA, Volk T (2003) Shortstop recruits EB1/APC1 and promotes microtubule assembly at the muscle-tendon junction. Curr Biol 13:1086–1095

    Article  PubMed  CAS  Google Scholar 

  78. Grevengoed EE, Peifer M (2003) Cytoskeletal connections: building strong cells in new ways. Curr Biol 13:R568–R570

    Article  PubMed  CAS  Google Scholar 

  79. Woodring PJ, Hunter T, Wang JY (2001) Inhibition of c-Abl tyrosine kinase activity by filamentous actin. J Biol Chem 276:27104–27110

    Article  PubMed  CAS  Google Scholar 

  80. Moresco EM, Scheetz AJ, Bornmann WG, Koleske AJ, Fitzsimonds RM (2003) Abl family nonreceptor tyrosine kinases modulate short-term synaptic plasticity. J Neurophysiol 89:1678–1687

    Article  PubMed  CAS  Google Scholar 

  81. Moresco EM, Donaldson S, Williamson A, Koleske AJ (2005) Integrin-mediated dendrite branch maintenance requires Abelson (Abl) family kinases. J Neurosci 25:6105–6118

    Article  PubMed  CAS  Google Scholar 

  82. Peacock JG, Miller AL, Bradley WD, Rodriguez OC, Webb DJ, Koleske AJ (2007) The Abl-related gene tyrosine kinase acts through p190RhoGAP to inhibit actomyosin contractility and regulate focal adhesion dynamics upon adhesion to fibronectin. Mol Biol Cell 18:3860–3872

    Article  PubMed  CAS  Google Scholar 

  83. Nakanishi H, Obaishi H, Satoh A, Wada M, Mandai K, Satoh K, Nishioka H, Matsuura Y, Mizoguchi A, Takai Y (1997) Neurabin: a novel neural tissue-specific actin filament-binding protein involved in neurite formation. J Cell Biol 139:951–961

    Article  PubMed  CAS  Google Scholar 

  84. Terry-Lorenzo RT, Roadcap DW, Otsuka T, Blanpied TA, Zamorano PL, Garner CC, Shenolikar S, Ehlers MD (2005) Neurabin/protein phosphatase-1 complex regulates dendritic spine morphogenesis and maturation. Mol Biol Cell 16:2349–2362

    Article  PubMed  CAS  Google Scholar 

  85. Feng J, Yan Z, Ferreira A, Tomizawa K, Liauw JA, Zhuo M, Allen PB, Ouimet CC, Greengard P (2000) Spinophilin regulates the formation and function of dendritic spines. Proc Natl Acad Sci USA 97:9287–9292

    Article  PubMed  CAS  Google Scholar 

  86. Zito K, Knott G, Shepherd GM, Shenolikar S, Svoboda K (2004) Induction of spine growth and synapse formation by regulation of the spine actin cytoskeleton. Neuron 44:321–334

    Article  PubMed  CAS  Google Scholar 

  87. Tsukada M, Prokscha A, Oldekamp J, Eichele G (2003) Identification of neurabin II as a novel doublecortin interacting protein. Mech Dev 120:1033–1043

    Article  PubMed  CAS  Google Scholar 

  88. Ryan XP, Alldritt J, Svenningsson P, Allen PB, Wu GY, Nairn AC, Greengard P (2005) The Rho-specific GEF Lfc interacts with neurabin and spinophilin to regulate dendritic spine morphology. Neuron 47:85–100

    Article  PubMed  CAS  Google Scholar 

  89. Allison DW, Chervin AS, Gelfand VI, Craig AM (2000) Postsynaptic scaffolds of excitatory and inhibitory synapses in hippocampal neurons: maintenance of core components independent of actin filaments and microtubules. J Neurosci 20:4545–4554

    PubMed  CAS  Google Scholar 

  90. Quitsch A, Berhorster K, Liew CW, Richter D, Kreienkamp HJ (2005) Postsynaptic shank antagonizes dendrite branching induced by the leucine-rich repeat protein Densin-180. J Neurosci 25:479–487

    Article  PubMed  CAS  Google Scholar 

  91. Charych EI, Akum BF, Goldberg JS, Jornsten RJ, Rongo C, Zheng JQ, Firestein BL (2006) Activity-independent regulation of dendrite patterning by postsynaptic density protein PSD-95. J Neurosci 26:10164–10176

    Article  PubMed  CAS  Google Scholar 

  92. Vessey JP, Karra D (2007) More than just synaptic building blocks: scaffolding proteins of the post-synaptic density regulate dendritic patterning. J Neurochem 102:324–332

    Article  PubMed  CAS  Google Scholar 

  93. Migaud M, Charlesworth P, Dempster M, Webster LC, Watabe AM, Makhinson M, He Y, Ramsay MF, Morris RG, Morrison JH, O’Dell TJ, Grant SG (1998) Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 396:433–439

    Article  PubMed  CAS  Google Scholar 

  94. Brenman JE, Topinka JR, Cooper EC, McGee AW, Rosen J, Milroy T, Ralston HJ, Bredt DS (1998) Localization of postsynaptic density-93 to dendritic microtubules and interaction with microtubule-associated protein 1A. J Neurosci 18:8805–8813

    PubMed  CAS  Google Scholar 

  95. Passafaro M, Sala C, Niethammer M, Sheng M (1999) Microtubule binding by CRIPT and its potential role in the synaptic clustering of PSD-95. Nat Neurosci 2:1063–1069

    Article  PubMed  CAS  Google Scholar 

  96. Akum BF, Chen M, Gunderson SI, Riefler GM, Scerri-Hansen MM, Firestein BL (2004) Cypin regulates dendrite patterning in hippocampal neurons by promoting microtubule assembly. Nat Neurosci 7:145–152

    Article  PubMed  CAS  Google Scholar 

  97. Firestein BL, Brenman JE, Aoki C, Sanchez-Perez AM, El-Husseini AE, Bredt DS (1999) Cypin: a cytosolic regulator of PSD-95 postsynaptic targeting. Neuron 24:659–672

    Article  PubMed  CAS  Google Scholar 

  98. Chen M, Lucas KG, Akum BF, Balasingam G, Stawicki TM, Provost JM, Riefler GM, Jornsten RJ, Firestein BL (2005) A novel role for snapin in dendrite patterning: interaction with cypin. Mol Biol Cell 16:5103–5114

    Article  PubMed  CAS  Google Scholar 

  99. Reese ML, Dakoji S, Bredt DS, Dotsch V (2007) The guanylate kinase domain of the MAGUK PSD-95 binds dynamically to a conserved motif in MAP1a. Nat Struct Mol Biol 14:155–163

    Article  PubMed  CAS  Google Scholar 

  100. Niethammer M, Valtschanoff JG, Kapoor TM, Allison DW, Weinberg RJ, Craig AM, Sheng M (1998) CRIPT, a novel postsynaptic protein that binds to the third PDZ domain of PSD-95/SAP90. Neuron 20:693–707

    Article  PubMed  CAS  Google Scholar 

  101. Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J, Weinberg RJ, Worley PF, Sheng M (1999) Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23:569–582

    Article  PubMed  CAS  Google Scholar 

  102. Hirokawa N, Takemura R (2004) Molecular motors in neuronal development, intracellular transport and diseases. Curr Opin Neurobiol 14:564–573

    Article  PubMed  CAS  Google Scholar 

  103. Bridgman PC (2004) Myosin-dependent transport in neurons. J Neurobiol 58:164–174

    Article  PubMed  CAS  Google Scholar 

  104. Hirokawa N, Takemura R (2005) Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci 6:201–214

    Article  PubMed  CAS  Google Scholar 

  105. Mok H, Shin H, Kim S, Lee JR, Yoon J, Kim E (2002) Association of the kinesin superfamily motor protein KIF1Balpha with postsynaptic density-95 (PSD-95), synapse-associated protein-97, and synaptic scaffolding molecule PSD-95/discs large/zona occludens-1 proteins. J Neurosci 22:5253–5258

    PubMed  CAS  Google Scholar 

  106. Setou M, Seog DH, Tanaka Y, Kanai Y, Takei Y, Kawagishi M, Hirokawa N (2002) Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417:83–87

    Article  PubMed  CAS  Google Scholar 

  107. Hoogenraad CC, Milstein AD, Ethell IM, Henkemeyer M, Sheng M (2005) GRIP1 controls dendrite morphogenesis by regulating EphB receptor trafficking. Nat Neurosci 8:906–915

    PubMed  CAS  Google Scholar 

  108. Yu W, Cook C, Sauter C, Kuriyama R, Kaplan PL, Baas PW (2000) Depletion of a microtubule-associated motor protein induces the loss of dendritic identity. J Neurosci 20:5782–5791

    PubMed  CAS  Google Scholar 

  109. Kobayashi N (2002) Mechanism of the process formation; podocytes vs. neurons. Microsc Res Tech 57:217–223

    Article  PubMed  CAS  Google Scholar 

  110. Naisbitt S, Valtschanoff J, Allison DW, Sala C, Kim E, Craig AM, Weinberg RJ, Sheng M (2000) Interaction of the postsynaptic density-95/guanylate kinase domain-associated protein complex with a light chain of myosin-V and dynein. J Neurosci 20:4524–4534

    PubMed  CAS  Google Scholar 

  111. Langford GM (2002) Myosin-V, a versatile motor for short-range vesicle transport. Traffic 3:859–865

    Article  PubMed  CAS  Google Scholar 

  112. Goeckeler ZM, Wysolmerski RB (1995) Myosin light chain kinase-regulated endothelial cell contraction: the relationship between isometric tension, actin polymerization, and myosin phosphorylation. J Cell Biol 130:613–627

    Article  PubMed  CAS  Google Scholar 

  113. Hayashi ML, Choi SY, Rao BS, Jung HY, Lee HK, Zhang D, Chattarji S, Kirkwood A, Tonegawa S (2004) Altered cortical synaptic morphology and impaired memory consolidation in forebrain- specific dominant-negative PAK transgenic mice. Neuron 42:773–787

    Article  PubMed  CAS  Google Scholar 

  114. Ryu J, Liu L, Wong TP, Wu DC, Burette A, Weinberg R, Wang YT, Sheng M (2006) A critical role for myosin IIb in dendritic spine morphology and synaptic function. Neuron 49:175–182

    Article  PubMed  CAS  Google Scholar 

  115. Myers KA, Tint I, Nadar CV, He Y, Black MM, Baas PW (2006) Antagonistic forces generated by cytoplasmic dynein and myosin-II during growth cone turning and axonal retraction. Traffic 7:1333–1351

    Article  PubMed  CAS  Google Scholar 

  116. Ali MY, Krementsova EB, Kennedy GG, Mahaffy R, Pollard TD, Trybus KM, Warshaw DM (2007) Myosin Va maneuvers through actin intersections and diffuses along microtubules. Proc Natl Acad Sci USA 104:4332–4336

    Article  PubMed  CAS  Google Scholar 

  117. Negishi M, Katoh H (2002) Rho family GTPases as key regulators for neuronal network formation. J Biochem 132:157–166

    PubMed  CAS  Google Scholar 

  118. Negishi M, Katoh H (2005) Rho family GTPases and dendrite plasticity. Neuroscientist 11:187–191

    Article  PubMed  CAS  Google Scholar 

  119. Luo L, Hensch TK, Ackerman L, Barbel S, Jan LY, Jan YN (1996) Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature 379:837–840

    Article  PubMed  CAS  Google Scholar 

  120. Threadgill R, Bobb K, Ghosh A (1997) Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron 19:625–634

    Article  PubMed  CAS  Google Scholar 

  121. Diana G, Valentini G, Travaglione S, Falzano L, Pieri M, Zona C, Meschini S, Fabbri A, Fiorentini C (2007) Enhancement of learning and memory after activation of cerebral Rho GTPases. Proc Natl Acad Sci USA 104:636–641

    Article  PubMed  CAS  Google Scholar 

  122. Miyamoto Y, Yamauchi J, Sanbe A, Tanoue A (2007) Dock6, a Dock-C subfamily guanine nucleotide exchanger, has the dual specificity for Rac1 and Cdc42 and regulates neurite outgrowth. Exp Cell Res 313:791–804

    Article  PubMed  CAS  Google Scholar 

  123. Nakayama AY, Harms MB, Luo L (2000) Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J Neurosci 20:5329–5338

    PubMed  CAS  Google Scholar 

  124. Grabham PW, Reznik B, Goldberg DJ (2003) Microtubule and Rac 1-dependent F-actin in growth cones. J Cell Sci 116:3739–3748

    Article  PubMed  CAS  Google Scholar 

  125. Ehler E, van Leeuwen F, Collard JG, Salinas PC (1997) Expression of Tiam-1 in the developing brain suggests a role for the Tiam-1-Rac signaling pathway in cell migration and neurite outgrowth. Mol Cell Neurosci 9:1–12

    Article  PubMed  CAS  Google Scholar 

  126. Leeuwen FN, Kain HE, Kammen RA, Michiels F, Kranenburg OW, Collard JG (1997) The guanine nucleotide exchange factor Tiam1 affects neuronal morphology; opposing roles for the small GTPases Rac and Rho. J Cell Biol 139:797–807

    Article  PubMed  CAS  Google Scholar 

  127. Tanaka M, Ohashi R, Nakamura R, Shinmura K, Kamo T, Sakai R, Sugimura H (2004) Tiam1 mediates neurite outgrowth induced by ephrin-B1 and EphA2. EMBO J 23:1075–1088

    Article  PubMed  CAS  Google Scholar 

  128. Tolias KF, Bikoff JB, Burette A, Paradis S, Harrar D, Tavazoie S, Weinberg RJ, Greenberg ME (2005) The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines. Neuron 45:525–538

    Article  PubMed  CAS  Google Scholar 

  129. Miyamoto Y, Yamauchi J, Tanoue A, Wu C, Mobley WC (2006) TrkB binds and tyrosine-phosphorylates Tiam1, leading to activation of Rac1 and induction of changes in cellular morphology. Proc Natl Acad Sci USA 103:10444–10449

    Article  PubMed  CAS  Google Scholar 

  130. Zhang H, Macara IG (2006) The polarity protein PAR-3 and TIAM1 cooperate in dendritic spine morphogenesis. Nat Cell Biol 8:227–237

    Article  PubMed  CAS  Google Scholar 

  131. Tolias KF, Bikoff JB, Kane CG, Tolias CS, Hu L, Greenberg ME (2007) The Rac1 guanine nucleotide exchange factor Tiam1 mediates EphB receptor-dependent dendritic spine development. Proc Natl Acad Sci USA 104:7265–7270

    Article  PubMed  CAS  Google Scholar 

  132. Scott EK, Reuter JE, Luo L (2003) Small GTPase Cdc42 is required for multiple aspects of dendritic morphogenesis. J Neurosci 23:3118–3123

    PubMed  CAS  Google Scholar 

  133. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    Article  PubMed  CAS  Google Scholar 

  134. Hayashi K, Ohshima T, Mikoshiba K (2002) Pak1 is involved in dendrite initiation as a downstream effector of Rac1 in cortical neurons. Mol Cell Neurosci 20:579–594

    Article  PubMed  CAS  Google Scholar 

  135. Hayashi K, Ohshima T, Hashimoto M, Mikoshiba K (2007) Pak1 regulates dendritic branching and spine formation. Dev Neurobiol 67:655–669

    Article  PubMed  CAS  Google Scholar 

  136. Sells MA, Knaus UG, Bagrodia S, Ambrose DM, Bokoch GM, Chernoff J (1997) Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr Biol 7:202–210

    Article  PubMed  CAS  Google Scholar 

  137. Edwards DC, Sanders LC, Bokoch GM, Gill GN (1999) Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1:253–259

    Article  PubMed  CAS  Google Scholar 

  138. Vadlamudi RK, Barnes CJ, Rayala S, Li F, Balasenthil S, Marcus S, Goodson HV, Sahin AA, Kumar R (2005) p21-activated kinase 1 regulates microtubule dynamics by phosphorylating tubulin cofactor B. Mol Cell Biol 25:3726–3736

    Article  PubMed  CAS  Google Scholar 

  139. Lee T, Winter C, Marticke SS, Lee A, Luo L (2000) Essential roles of Drosophila RhoA in the regulation of neuroblast proliferation and dendritic but not axonal morphogenesis. Neuron 25:307–316

    Article  PubMed  CAS  Google Scholar 

  140. Schubert V, Da Silva JS, Dotti CG (2006) Localized recruitment and activation of RhoA underlies dendritic spine morphology in a glutamate receptor-dependent manner. J Cell Biol 172:453–467

    Article  PubMed  CAS  Google Scholar 

  141. Da Silva JS, Medina M, Zuliani C, Di Nardo A, Witke W, Dotti CG (2003) RhoA/ROCK regulation of neuritogenesis via profilin IIa-mediated control of actin stability. J Cell Biol 162:1267–1279

    Article  PubMed  CAS  Google Scholar 

  142. Chen H, Firestein BL (2007) RhoA regulates dendrite branching in hippocampal neurons by decreasing cypin protein levels. J Neurosci 27:8378–8386

    Article  PubMed  CAS  Google Scholar 

  143. Ishizaki T, Morishima Y, Okamoto M, Furuyashiki T, Kato T, Narumiya S (2001) Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1. Nat Cell Biol 3:8–14

    Article  PubMed  CAS  Google Scholar 

  144. McAllister AK, Lo DC, Katz LC (1995) Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15:791–803

    Article  PubMed  CAS  Google Scholar 

  145. McAllister AK, Katz LC, Lo DC (1997) Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron 18:767–778

    Article  PubMed  CAS  Google Scholar 

  146. Baker RE, Dijkhuizen PA, Van Pelt J, Verhaagen J (1998) Growth of pyramidal, but not non-pyramidal, dendrites in long-term organotypic explants of neonatal rat neocortex chronically exposed to neurotrophin-3. Eur J Neurosci 10:1037–1044

    Article  PubMed  CAS  Google Scholar 

  147. Horch HW, Kruttgen A, Portbury SD, Katz LC (1999) Destabilization of cortical dendrites and spines by BDNF. Neuron 23:353–364

    Article  PubMed  CAS  Google Scholar 

  148. Lom B, Cohen-Cory S (1999) Brain-derived neurotrophic factor differentially regulates retinal ganglion cell dendritic and axonal arborization in vivo. J Neurosci 19:9928–9938

    PubMed  CAS  Google Scholar 

  149. Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642

    Article  PubMed  CAS  Google Scholar 

  150. Snider WD (1988) Nerve growth factor enhances dendritic arborization of sympathetic ganglion cells in developing mammals. J Neurosci 8:2628–2634

    PubMed  CAS  Google Scholar 

  151. Mill JF, Chao MV, Ishii DN (1985) Insulin, insulin-like growth factor II, and nerve growth factor effects on tubulin mRNA levels and neurite formation. Proc Natl Acad Sci USA 82:7126–7130

    Article  PubMed  CAS  Google Scholar 

  152. Fernyhough P, Mill JF, Roberts JL, Ishii DN (1989) Stabilization of tubulin mRNAs by insulin and insulin-like growth factor I during neurite formation. Brain Res Mol Brain Res 6:109–120

    Article  PubMed  CAS  Google Scholar 

  153. Paves H, Neuman T, Metsis M, Saarma M (1990) Nerve growth factor-induced rapid reorganization of microfilaments in PC12 cells: possible roles of different second messenger systems. Exp Cell Res 186:218–226

    Article  PubMed  CAS  Google Scholar 

  154. Bearer EL (1992) An actin-associated protein present in the microtubule organizing center and the growth cones of PC-12 cells. J Neurosci 12:750–761

    PubMed  CAS  Google Scholar 

  155. Schwartz PM, Borghesani PR, Levy RL, Pomeroy SL, Segal RA (1997) Abnormal cerebellar development and foliation in BDNF−/− mice reveals a role for neurotrophins in CNS patterning. Neuron 19:269–281

    Article  PubMed  CAS  Google Scholar 

  156. Segal RA, Rua L, Schwartz P (1997) Neurotrophins and programmed cell death during cerebellar development. Adv Neurol 72:79–86

    PubMed  CAS  Google Scholar 

  157. McAllister AK, Katz LC, Lo DC (1996) Neurotrophin regulation of cortical dendritic growth requires activity. Neuron 17:1057–1064

    Article  PubMed  CAS  Google Scholar 

  158. Jin X, Hu H, Mathers PH, Agmon A (2003) Brain-derived neurotrophic factor mediates activity-dependent dendritic growth in nonpyramidal neocortical interneurons in developing organotypic cultures. J Neurosci 23:5662–5673

    PubMed  CAS  Google Scholar 

  159. Dijkhuizen PA, Ghosh A (2005) BDNF regulates primary dendrite formation in cortical neurons via the PI3-kinase and MAP kinase signaling pathways. J Neurobiol 62:278–288

    Article  PubMed  CAS  Google Scholar 

  160. Reszka AA, Seger R, Diltz CD, Krebs EG, Fischer EH (1995) Association of mitogen-activated protein kinase with the microtubule cytoskeleton. Proc Natl Acad Sci USA 92:8881–8885

    Article  PubMed  CAS  Google Scholar 

  161. Orlova I, Silver L, Gallo G (2007) Regulation of actomyosin contractility by PI3K in sensory axons. Dev Neurobiol 67:1843–1851

    Article  PubMed  CAS  Google Scholar 

  162. Fivaz M, Bandara S, Inoue T, Meyer T (2008) Robust neuronal symmetry breaking by Ras-triggered local positive feedback. Curr Biol 18:44–50

    Article  PubMed  CAS  Google Scholar 

  163. Morfini G, DiTella MC, Feiguin F, Carri N, Caceres A (1994) Neurotrophin-3 enhances neurite outgrowth in cultured hippocampal pyramidal neurons. J Neurosci Res 39:219–232

    Article  PubMed  CAS  Google Scholar 

  164. Niblock MM, Brunso-Bechtold JK, Riddle DR (2000) Insulin-like growth factor I stimulates dendritic growth in primary somatosensory cortex. J Neurosci 20:4165–4176

    PubMed  CAS  Google Scholar 

  165. Bassell GJ, Zhang H, Byrd AL, Femino AM, Singer RH, Taneja KL, Lifshitz LM, Herman IM, Kosik KS (1998) Sorting of beta-actin mRNA and protein to neurites and growth cones in culture. J Neurosci 18:251–265

    PubMed  CAS  Google Scholar 

  166. Zhang HL, Singer RH, Bassell GJ (1999) Neurotrophin regulation of beta-actin mRNA and protein localization within growth cones. J Cell Biol 147:59–70

    Article  PubMed  CAS  Google Scholar 

  167. D’Arcangelo G (2006) Reelin mouse mutants as models of cortical development disorders. Epilepsy Behav 8:81–90

    Article  PubMed  Google Scholar 

  168. Niu S, Renfro A, Quattrocchi CC, Sheldon M, D’Arcangelo G (2004) Reelin promotes hippocampal dendrite development through the VLDLR/ApoER2-Dab1 pathway. Neuron 41:71–84

    Article  PubMed  CAS  Google Scholar 

  169. Lambert de Rouvroit C, Goffinet AM (2001) Neuronal migration. Mech Dev 105:47–56

    Article  PubMed  CAS  Google Scholar 

  170. Gonzalez-Billault C, Del Rio JA, Urena JM, Jimenez-Mateos EM, Barallobre MJ, Pascual M, Pujadas L, Simo S, Torre AL, Gavin R, Wandosell F, Soriano E, Avila J (2005) A role of MAP1B in Reelin-dependent neuronal migration. Cereb Cortex 15:1134–1145

    Article  PubMed  Google Scholar 

  171. Jossin Y, Goffinet AM (2007) Reelin signals through phosphatidylinositol 3-kinase and Akt to control cortical development and through mTor to regulate dendritic growth. Mol Cell Biol 27:7113–7124

    Article  PubMed  CAS  Google Scholar 

  172. Reist NE, Werle MJ, McMahan UJ (1992) Agrin released by motor neurons induces the aggregation of acetylcholine receptors at neuromuscular junctions. Neuron 8:865–868

    Article  PubMed  CAS  Google Scholar 

  173. Mantych KB, Ferreira A (2001) Agrin differentially regulates the rates of axonal and dendritic elongation in cultured hippocampal neurons. J Neurosci 21:6802–6809

    PubMed  CAS  Google Scholar 

  174. Bergstrom RA, Sinjoanu RC, Ferreira A (2007) Agrin induced morphological and structural changes in growth cones of cultured hippocampal neurons. Neuroscience 149:527–536

    Article  PubMed  CAS  Google Scholar 

  175. Dai Z, Luo X, Xie H, Peng HB (2000) The actin-driven movement and formation of acetylcholine receptor clusters. J Cell Biol 150:1321–1334

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a 2007 NARSAD Toulmin Independent Investigator Award, NSF grant IBN-0548543 and MOD grant 1-FY08-464 (to B.L.F). E.S.S. is supported by NIH pre-doctoral training grant 5 T32 MH019957. We thank Melinda Kutzing and Michelle Previtera for their comments on the manuscript. In addition, we have tried to write as complete a review as possible; however, we apologize if we have inadvertently omitted any proteins involved in dendrite patterning that affect the MT and actin cytoskeletons.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonnie L. Firestein.

Additional information

Penelope C. Georges and Norell M. Hadzimichalis contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georges, P.C., Hadzimichalis, N.M., Sweet, E.S. et al. The Yin–Yang of Dendrite Morphology: Unity of Actin and Microtubules. Mol Neurobiol 38, 270–284 (2008). https://doi.org/10.1007/s12035-008-8046-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-008-8046-8

Keywords

Navigation