Skip to main content

Advertisement

Log in

Mechanisms of Neural and Behavioral Dysfunction in Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

This review critically examines progress in understanding the link between Alzheimer’s disease (AD) molecular pathogenesis and behavior, with an emphasis on the impact of amyloid-β. We present the argument that the AD research field requires more multifaceted analyses into the impacts of Alzheimer’s pathogenesis which combine simultaneous molecular-, circuit-, and behavior-level approaches. Supporting this argument is a review of particular research utilizing similar, “systems-level” methods in mouse models of AD. Related to this, a critique of common physiological and behavioral models is made—highlighting the likely usefulness of more refined and specific tools in understanding the relationship between candidate molecular pathologies and behavioral dysfunction. Finally, we propose challenges for future research which, if met, may greatly extend our current understanding of how AD molecular pathology impacts neural network function and behavior and possibly may lead to refinements in disease therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fontanini A, Katz DB (2008) Behavioral States, Network States, and Sensory Response Variability. J Neurophysiol 100(3):1160–1168

    PubMed  Google Scholar 

  2. Alzheimer's Association (2009) Alzheimer’s Disease Facts and Figures. Alzheimer's Association, Washington, D.C

    Google Scholar 

  3. Corder E et al (1993) Gene Dose of Apolipoprotein E type 4 Allele and the Risk of Alzheimer's Disease in Late Onset Families. Science 261(5123):921–923

    PubMed  CAS  Google Scholar 

  4. Roses A (1994) Apolipoprotein E is a Relevant Susceptibility Gene that Affects the Rate of Expression of Alzheimer's disease. Neurobiol Aging 15(Suppl 2):S165–S167

    PubMed  Google Scholar 

  5. Alzheimer A, Stelzmann R, Schnitzlein H, Murtagh F (1907) An English Translation of Alzheimer's 1907 Paper, "Uber Eine Eigenartige Erkankung der Hirnrinde". Clin Anat 8(6):429–431

    Google Scholar 

  6. Levy E et al (1990) Mutation of the Alzheimer's Disease Amyloid Gene in Hereditary Cerebral Hemorrhage. Dutch Type. Science 248(4959):1124–1126

    PubMed  CAS  Google Scholar 

  7. Bertram L, Lill C, Tanzi R (2010) The Genetics of Alzheimer Disease: Back to the Future. Neuron 68(2):270–281

    PubMed  CAS  Google Scholar 

  8. Cruts M, Hendriks L, Van Broeckhoven C (1996) The presenilin genes: a new gene family involved in Alzheimer disease pathology. Hum Mol Genet 5:1449–1455

    PubMed  CAS  Google Scholar 

  9. Clark RF et al (1995) The Structure of the Presenilin 1 (S182) Gene and Identification of Six Novel Mutations in Early Onset AD Families. Nat Genet 11(2):219–222

    CAS  Google Scholar 

  10. Sherrington R et al (1996) Alzheimer's Disease Associated with Mutations in Presenilin 2 is Rare and Variably Penetrant. Hum Mol Genet 5(7):985–988

    PubMed  CAS  Google Scholar 

  11. Cabrejo L et al (2006) Phenotype Associated with APP Duplication in Five Families. Brain 129(11):2966–2976

    PubMed  Google Scholar 

  12. Rovelet-Lecrux A et al (2006) APP Locus Duplication Causes Autosomal Dominant Early-onset Alzheimer Disease with Cerebral Amyloid Angiopathy. Nat Genet 38(1):24–26

    PubMed  CAS  Google Scholar 

  13. Kosik K (1990) Tau Protein and Neurodegeneration. Mol Neurobiol 4(3):171–179

    PubMed  CAS  Google Scholar 

  14. Spires TL et al (2005) Dendritic Spine Abnormalities in Amyloid Precursor Protein Transgenic Mice Demonstrated by Gene Transfer and Intravital Multiphoton Microscopy. J Neurosci 25(31):7278–7287

    PubMed  CAS  Google Scholar 

  15. Braak H, Braak E (1991) Neuropathological Stageing of Alzheimer-related Changes. Acta Neuropathol 82:239–259

    PubMed  CAS  Google Scholar 

  16. Braak H, Braak E (1997) Frequency of Stages of Alzheimer-Related Lesions in Different Age Categories. Neurobiol Aging 18(4):351–357

    PubMed  CAS  Google Scholar 

  17. Spillantini MG, Goedert M, Jakes R, Klug A (1990) Different Configurational States of Beta-amyloid and their Distributions Relative to Plaques and Tangles in Alzheimer Disease. Proc Natl Acad Sci USA 87(10):3947–3951

    PubMed  CAS  Google Scholar 

  18. Glenner GG, Wong CW (1984) Alzheimer's Disease: Initial Report of the Purification and Characterization of a Novel Cerebrovascular Amyloid Protein. Biochem Biophys Res Commun 120(3):885–890

    PubMed  CAS  Google Scholar 

  19. Vassar R et al (1999) Beta-secretase Cleavage of Alzheimer's Amyloid Precursor Protein by the Transmembrane Aspartic Protease BACE. Science 286(5440):735–741

    PubMed  CAS  Google Scholar 

  20. Sinha S et al (1999) Purification and Cloning of Amyloid Precursor Protein Beta-secretase from Human Brain. Nature 402(6761):537–540

    PubMed  CAS  Google Scholar 

  21. Yan R et al (1999) Membrane-anchored Aspartyl Protease with Alzheimer's Disease Beta-secretase Activity. Nature 402(6761):533–537

    PubMed  CAS  Google Scholar 

  22. Hussain I et al (1999) Identification of a Novel Aspartic Protease (Asp 2) as Beta-secretase. Mol Cell Neurosci 14(6):419–427

    PubMed  CAS  Google Scholar 

  23. Lewczuk P et al (2004) Neurochemical Diagnosis of Alzheimer's Dementia by CSF Abeta42, Abeta42/Abeta40 Ratio and Total Tau. Neurobiol Aging 25(3):273–281

    PubMed  CAS  Google Scholar 

  24. Borchelt DR et al (1996) Familial Alzheimer's Disease-Linked Presenilin 1 Variants Elevate A[beta]1-42/1-40 Ratio In Vitro and In Vivo. Neuron 17(5):1005–1013

    PubMed  CAS  Google Scholar 

  25. Kuperstein I et al (2010) Neurotoxicity of Alzheimer's Disease Aβ Peptides is Induced by Small Changes in the Aβ42 to Aβ40 ratio. EMBO J 29(19):3408–3420

    PubMed  CAS  Google Scholar 

  26. Greenwald J, Riek R (2010) Biology of Amyloid: Structure, Function, and Regulation. Structure 18(10):1244–1260

    PubMed  CAS  Google Scholar 

  27. Kamenetz F et al (2003) APP Processing and Synaptic Function. Neuron 37(6):925–937

    PubMed  CAS  Google Scholar 

  28. Cirrito JR et al (2008) Endocytosis Is Required for Synaptic Activity-Dependent Release of Amyloid-[beta] In Vivo. Neuron 58(1):42–51

    PubMed  CAS  Google Scholar 

  29. Cirrito JR et al (2005) Synaptic Activity Regulates Interstitial Fluid Amyloid-[beta] Levels In Vivo. Neuron 48(6):913–922

    PubMed  CAS  Google Scholar 

  30. LaFerla FM, Green KN, Oddo S (2007) Intracellular Amyloid-[beta] in Alzheimer's Disease. Nat Rev Neurosci 8(7):499–509

    PubMed  CAS  Google Scholar 

  31. Ghosal K et al (2009) Alzheimer's Disease-like Pathological Features in Transgenic Mice Expressing the APP Intracellular Domain. Proc Natl Acad Sci 106(43):18367–18372

    PubMed  CAS  Google Scholar 

  32. Jiang Y et al (2010) Alzheimers-related endosome dysfunction in Down syndrome is Abeta-independent but requires APP and is reversed by BACE-1 inhibition. Proc Natl Acad Sci 107(4):1630–1635

    PubMed  CAS  Google Scholar 

  33. Price DL, Sisodia SS (1998) Mutant Genes in Familial Alzheimer's Disease and Transgenic Models. Annu Rev Neurosci 21(1):479–505

    PubMed  CAS  Google Scholar 

  34. Steiner H, Capell A, Leimer U, Haass C (1999) Genes and Mechanisms Involved in Beta-amyloid Generation and Alzheimer's Disease. Eur Arch Psychiatry Clin Neurosci 249(6):266–270

    PubMed  CAS  Google Scholar 

  35. Comery TA et al (2005) Acute {gamma}-Secretase Inhibition Improves Contextual Fear Conditioning in the Tg2576 Mouse Model of Alzheimer's Disease. J Neurosci 25(39):8898–8902

    PubMed  CAS  Google Scholar 

  36. Lanz TA et al (2003) The gamma-Secretase Inhibitor N-[N-(3,5-Difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl Ester Reduces Abeta Levels in Vivo in Plasma and Cerebrospinal Fluid in Young (Plaque-Free) and Aged (Plaque-Bearing) Tg2576 Mice. J Pharmacol Exp Ther 305(3):864–871

    PubMed  CAS  Google Scholar 

  37. Kounnas M et al (2010) Modulation of Gamma-secretase Reduces Beta-amyloid Deposition in a Transgenic Mouse Model of Alzheimer's Disease. Neuron 67(5):769–780

    PubMed  CAS  Google Scholar 

  38. Extance A (2010) Alzheimer's Failure Raises Questions about Disease-modifying Strategies. Nat Rev Drug Discov 9(10):749–751

    PubMed  CAS  Google Scholar 

  39. Hardy J, Selkoe DJ (2002) The Amyloid Hypothesis of Alzheimer's Disease: Progress and Problems on the Road to Therapeutics. Science 297(5580):353–356

    PubMed  CAS  Google Scholar 

  40. Sperling R et al (2009) Amyloid Deposition is Associated with Impaired Default Network Function in Older Persons without Dementia. Neuron 63(2):178–188

    PubMed  CAS  Google Scholar 

  41. Rabinovici GD, Jagust WJ (2009) Amyloid Imaging in Aging and Dementia: Testing the Amyloid Hypothesis in vivo. Behav Neurol 21(1):117–128

    PubMed  CAS  Google Scholar 

  42. Aizenstein HJ et al (2008) Frequent Amyloid Deposition Without Significant Cognitive Impairment Among the Elderly. Arch Neurol 65(11):1509–1517

    PubMed  Google Scholar 

  43. Lee H-G et al (2007) Amyloid-B in Alzheimer Disease: The Null versus the Alternate Hypotheses. J Pharmacol Exp Ther 321(3):823–829

    PubMed  CAS  Google Scholar 

  44. Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A Protein Factor Essential for Microtubule Assembly. Proc Natl Acad Sci USA 72(5):1858–1862

    PubMed  CAS  Google Scholar 

  45. Iqbal K et al (1994) Mechanism of Neurofibrillary Degeneration in Alzheimer's Disease. Mol Neurobiol 9(1–3):119–123

    PubMed  CAS  Google Scholar 

  46. Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative Tauopathies. Annu Rev Neurosci 24(1):1121–1159

    PubMed  CAS  Google Scholar 

  47. Price J, Davis P, Morris J, White D (1991) The Distribution of Tangles, Plaques and Related immunohistochemical Markers in Healthy Aging and Alzheimer's Disease. Neurobiol Aging 12(4):295–312

    PubMed  CAS  Google Scholar 

  48. Delacourte A, Sergeant N, Wattez A, Gauvreau D, Robitaille Y (1998) Vulnerable Neuronal Subsets in Alzheimer's and Pick's Disease are Distinguished by their Tau Isoform Distribution and Phosphorylation. Ann Neurol 43(2):193–204

    PubMed  CAS  Google Scholar 

  49. Gotz J et al (1995) Somatodendritic Localization and Hyperphosphorylation of Tau Protein in Transgenic Mice Expressing the Longest Human Brain Tau Isoform. EMBO J 14(7):1304–1313

    PubMed  CAS  Google Scholar 

  50. Lewis J et al (2001) Enhanced Neurofibrillary Degeneration in Transgenic Mice Expressing Mutant Tau and APP. Science 293(5534):1487–1491

    PubMed  CAS  Google Scholar 

  51. Gotz J, Chen F, van Dorpe J, Nitsch RM (2001) Formation of Neurofibrillary Tangles in P301L Tau Transgenic Mice Induced by Abeta 42 Fibrils. Science 293(5534):1491–1495

    PubMed  CAS  Google Scholar 

  52. Oddo S, Billings L, Kesslak JP, Cribbs D, LaFerla F (2004) Abeta Immunotherapy Leads to Clearance of Early, but not late, Hyperphosphorylated Tau Aggregates via the Proteasome. Neuron 43(3):321–332

    PubMed  CAS  Google Scholar 

  53. Roberson ED et al (2007) Reducing Endogenous Tau Ameliorates Amyloid ß-Induced Deficits in an Alzheimer's Disease Mouse Model. Science 316(5825):750–754

    PubMed  CAS  Google Scholar 

  54. Vossel K et al (2010) Tau Reduction Prevents Abeta-induced Defects in Axonal Transport. Science 330(6001):198–198

    PubMed  CAS  Google Scholar 

  55. Hoover B et al (2010) Tau Mislocalization to Dendritic Spines Mediates Synaptic Dysfunction Independently of Neurodegeneration. Neuron 68(6):1067–1081

    PubMed  CAS  Google Scholar 

  56. Cataldo AM et al (2000) Endocytic Pathway Abnormalities Precede Amyloid beta Deposition in Sporadic Alzheimer's Disease and Down Syndrome: Differential Effects of APOE Genotype and Presenilin Mutations. Am J Pathol 157(1):277–286

    PubMed  CAS  Google Scholar 

  57. Ginsberg SD et al (2010) Regional Selectivity of rab5 and rab7 Protein Upregulation in Mild Cognitive Impairment and Alzheimer's Disease. J Alzheimers Dis 22(2):631–639

    PubMed  CAS  Google Scholar 

  58. Cataldo AM et al (2003) App Gene Dosage Modulates Endosomal Abnormalities of Alzheimer's Disease in a Segmental Trisomy 16 Mouse Model of Down Syndrome. J Neurosci 23(17):6788–6792

    PubMed  CAS  Google Scholar 

  59. Salehi A et al (2006) Increased App Expression in a Mouse Model of Down's Syndrome Disrupts NGF Transport and Causes Cholinergic Neuron Degeneration. Neuron 51(1):29–42

    PubMed  CAS  Google Scholar 

  60. Nixon RA, Yang D-S, Lee J-H (2008) Neurodegenerative Lysosomal Disorders: A Continuum from Development to Late Age. Autophagy 4(5):590–599

    PubMed  CAS  Google Scholar 

  61. Pimplikar SW, Nixon RA, Robakis NK, Shen J, Tsai L-H (2010) Amyloid-Independent Mechanisms in Alzheimer's Disease Pathogenesis. J Neurosci 30(45):14946–14954

    PubMed  CAS  Google Scholar 

  62. Mueller-Steiner S et al (2006) Antiamyloidogenic and Neuroprotective Functions of Cathepsin B: Implications for Alzheimer's Disease. Neuron 51(6):703–714

    PubMed  CAS  Google Scholar 

  63. Yang DS et al (2011) Reversal of Autophagy Dysfunction in the TgCRND8 Mouse Model of Alzheimer's Disease Ameliorates Amyloid Pathologies and Memory Deficits. Brain 134(Pt 1):258–277

    PubMed  Google Scholar 

  64. Pratico D, Uryu K, Leight S, Trojanoswki JQ, Lee VMY (2001) Increased Lipid Peroxidation Precedes Amyloid Plaque Formation in an Animal Model of Alzheimer Amyloidosis. J Neurosci 21(12):4183–4187

    PubMed  CAS  Google Scholar 

  65. Yan Q et al (2003) Anti-inflammatory Drug Therapy Alters Beta-amyloid Processing and Deposition in an Animal Model of Alzheimer's Disease. J Neurosci 23(20):7504–7509

    PubMed  CAS  Google Scholar 

  66. Cameron B, Landreth GE (2010) Inflammation, Microglia, and Alzheimer's Disease. Neurobiol Dis 37(3):503–509

    PubMed  CAS  Google Scholar 

  67. Smith MA, Richey Harris PL, Sayre LM, Beckman JS, Perry G (1997) Widespread Peroxynitrite-Mediated Damage in Alzheimer's Disease. J Neurosci 17(8):2653–2657

    PubMed  CAS  Google Scholar 

  68. Mark RJ, Lovell MA, Markesbery WR, Uchida K, Mattson MP (1997) A Role for 4-hydroxynonenal, an Aldehydic Product of Lipid Peroxidation, in Disruption of Ion Homeostasis and Neuronal Death Induced by Amyloid Beta-peptide. J Neurochem 68(1):255–264

    PubMed  CAS  Google Scholar 

  69. Pratico D (2008) Evidence of Oxidative Stress in Alzheimer's Disease Brain and Antioxidant therapy: Lights and Shadows. Ann NY Acad Sci 1147:70–78

    PubMed  CAS  Google Scholar 

  70. Herrup K (2010) Reimagining Alzheimer's Disease–An Age-Based Hypothesis. J Neurosci 30(50):16755–16762

    PubMed  CAS  Google Scholar 

  71. Wilkinson BL et al. (2010) Ibuprofen attenuates oxidative damage through NOX2 inhibition in Alzheimer's disease. Neurobiol Aging, in press

  72. Schwartz M, Shechter R (2010) Systemic Inflammatory Cells Fight Off Neurodegenerative Disease. Nature Reviews. Neurology 6(7):405–410

    PubMed  CAS  Google Scholar 

  73. Andersen K et al (1995) Do Nonsteroidal Anti-inflammatory Drugs Decrease the Risk for Alzheimer's Disease? The Rotterdam Study. Neurology 45(8):1441–1445

    PubMed  CAS  Google Scholar 

  74. Ramon y Cajal S (1954) Neuron Theory or Reticular Theory? Nature, London

    Google Scholar 

  75. Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New York

    Google Scholar 

  76. Bliss TVP, Lomo T (1973) Long-lasting Potentiation of Synaptic Transmission in the Dentate Area of the Anaesthetized Rabbit Following Stimulation of the Perforant Path. J Physiol 232(2):331–356

    PubMed  CAS  Google Scholar 

  77. Magee J, Johnston D (2005) Plasticity of dendritic function. Curr Opin Neurobiol 15(3):334–342

    PubMed  CAS  Google Scholar 

  78. Collingridge GL, Kehl SJ, McLennan H (1983) Excitatory Amino Acids in Synaptic Transmission in the Schaffer Collateral-commissural Pathway of the Rat Hippocampus. J Physiol 334(1):33–46

    PubMed  CAS  Google Scholar 

  79. Lynch G, Larson J, Kelso S, Barrionuevo G, Schottler F (1983) Intracellular Injections of EGTA Block Induction of Hippocampal Long-term Potentiation. Nature 305(5936):719–721

    PubMed  CAS  Google Scholar 

  80. Man HY et al (2000) Regulation of AMPA Receptor-mediated Synaptic Transmission by Clathrin-dependent Receptor Internalization. Neuron 25(3):649–662

    PubMed  CAS  Google Scholar 

  81. Kemp N, Bashir ZI (2001) Long-term Depression: A Cascade of Induction and Expression Mechanisms. Prog Neurobiol 65(4):339–365

    PubMed  CAS  Google Scholar 

  82. Losonczy A, Makara JK, Magee JC (2008) Compartmentalized Dendritic Plasticity and Input Feature Storage in Neurons. Nature 452:436–441

    PubMed  CAS  Google Scholar 

  83. Harvey CD, Svoboda K (2007) Locally Dynamic Synaptic Learning Rules in Pyramidal Neuron Dendrites. Nature 450(7173):1195–1200

    PubMed  CAS  Google Scholar 

  84. Selkoe DJ (2002) Alzheimer's Disease Is a Synaptic Failure. Science 298(5594):789–791

    PubMed  CAS  Google Scholar 

  85. Tanzi RE (2005) The Synaptic A[beta] Hypothesis of Alzheimer Disease. Nat Neurosci 8(8):977–979

    PubMed  CAS  Google Scholar 

  86. Snyder E et al (2005) Regulation of NMDA Receptor Trafficking by Amyloid-beta. Nat Neurosci 8(8):1051–1058

    PubMed  CAS  Google Scholar 

  87. Cisse M et al (2011) Reversing EphB2 Depletion Rescues Cognitive Functions in Alzheimer Model. Nature 469(7328):47–52

    PubMed  CAS  Google Scholar 

  88. Takasu M, Dalva M, Zigmond R, Greenberg M (2002) Modulation of NMDA Receptor-dependent Calcium Influx and Gene Expression through EphB Receptors. Science 295(5554):491–495

    PubMed  CAS  Google Scholar 

  89. Hsieh H et al (2006) AMPAR Removal Underlies A[beta]-Induced Synaptic Depression and Dendritic Spine Loss. Neuron 52(5):831–843

    PubMed  CAS  Google Scholar 

  90. Shankar GM et al (2008) Amyloid-[beta] Protein Dimers Isolated Directly from Alzheimer's Brains Impair Synaptic Plasticity and Memory. Nat Med 14(8):837–842

    PubMed  CAS  Google Scholar 

  91. Knowles RB et al (1999) Plaque-Induced Neurite Abnormalities: Implications for Disruption of Neural Networks in Alzheimer's Disease. Proc Natl Acad Sci USA 96(9):5274–5279

    PubMed  CAS  Google Scholar 

  92. Busche MA et al (2008) Clusters of Hyperactive Neurons Near Amyloid Plaques in a Mouse Model of Alzheimer's Disease. Science 321(5896):1686–1689

    PubMed  CAS  Google Scholar 

  93. Hof PR, Morrison JH (1994) The cellular basis of cortical disconnection in Alzheimer's disease and relating dementing conditions. In: Katzman R, Bick KL, Terry RD (eds) Alzheimer's disease. Raven, New York, pp 197–228

    Google Scholar 

  94. Kuchibhotla K, Lattarulo C, Hyman B, Bacskai B (2009) Synchronous Hyperactivity and Intercellular Calcium Waves in Astrocytes in Alzheimer Mice. Science 323(5918):1211–1215

    PubMed  CAS  Google Scholar 

  95. Kuchibhotla K et al (2008) Abeta Plaques Lead to Aberrant Regulation of Calcium Homeostasis in vivo Resulting in Structural and Functional Disruption of Neuronal Networks. Neuron 59(2):214–225

    PubMed  CAS  Google Scholar 

  96. Santos S et al (2009) Expression of Human Amyloid Precursor Protein in Rat Cortical Neurons Inhibits Calcium Oscillations. J Neurosci 29(15):4708–4718

    PubMed  CAS  Google Scholar 

  97. Uhlhaas PJ, Singer W (2006) Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology. Neuron 52(1):155–168

    PubMed  CAS  Google Scholar 

  98. Wilson DA, Stevenson RJ (2006) Learning to smell: olfactory perception from neurobiology to behavior. Johns Hopkins University Press, Baltimore, p 309, ix

    Google Scholar 

  99. Jeong J (2004) EEG Dynamics in Patients with Alzheimer's Disease. Clin Neurophysiol 115(7):1490–1505

    PubMed  Google Scholar 

  100. Weiner H, Schuster DB (1956) The Electroencephalogram in Dementia; Some Preliminary Observations and Correlations. Electroencephalogr Clin Neurophysiol 8(3):479–488

    PubMed  CAS  Google Scholar 

  101. Jelic V et al (2000) Quantitative Electroencephalography in Mild Cognitive Impairment: Longitudinal Changes and Possible Prediction of Alzheimer's Disease. Neurobiol Aging 21(4):533–540

    PubMed  CAS  Google Scholar 

  102. Palop JJ, Mucke L (2010) Amyloid-[beta]-induced Neuronal Dysfunction in Alzheimer's Disease: From Synapses Toward Neural Networks. Nat Neurosci 13(7):812–818

    PubMed  CAS  Google Scholar 

  103. Schreiter-Gasser U, Gasser T, Ziegler P (1994) Quantitative EEG Analysis in Early Onset Alzheimer's Disease: Correlations with Severity, Clinical Characteristics, Visual EEG and CCT. Electroencephalogr Clin Neurophysiol 90(4):267–272

    PubMed  CAS  Google Scholar 

  104. Claus JJ et al (1998) Quantitative Spectral Electroencephalography in Predicting Survival in Patients with Early Alzheimer Disease. Arch Neurol 55(8):1105–1111

    PubMed  CAS  Google Scholar 

  105. Macrides F, Eichenbaum HB, Forbes WB (1982) Temporal relationship between sniffing and the limbic theta rhythm during odor discrimination reversal learning. J Neurosci 2:1705–1711

    PubMed  CAS  Google Scholar 

  106. Buzsaki G (2006) Rhythms of the Brain. Oxford University Press, Oxford

    Google Scholar 

  107. Villette V et al (2010) Decreased Rhythmic GABAergic Septal Activity and Memory-associated Theta Oscillations after Hippocampal Amyloid-beta Pathology in the Rat. J Neurosci 30(33):10991–11003

    PubMed  CAS  Google Scholar 

  108. Amatniek J et al (2006) Incidence and Predictors of Seizures in Patients with Alzheimer's Disease. Epilepsia 47(5):867–872

    PubMed  Google Scholar 

  109. Minkeviciene R et al (2009) Amyloid Beta-induced Neuronal Hyperexcitability Triggers Progressive Epilepsy. J Neurosci 29(11):3453–3462

    PubMed  CAS  Google Scholar 

  110. Palop J et al (2007) Aberrant Excitatory Neuronal Activity and Compensatory Remodeling of Inhibitory Hippocampal Circuits in Mouse Models of Alzheimer's Disease. Neuron 55(5):697–711

    PubMed  CAS  Google Scholar 

  111. Lalonde R, Dumont M, Staufenbiel M, Strazielle C (2005) Neurobehavioral Characterization of APP23 Transgenic Mice with the SHIRPA Primary Screen. Behav Brain Res 157(1):91–98

    PubMed  CAS  Google Scholar 

  112. O'Keefe J, Dostrovsky J (1971) The Hippocampus as a Spatial Map. Preliminary Evidence from Unit Activity in the Freely-moving Rat. Brain Res 34(1):171–175

    PubMed  Google Scholar 

  113. Cacucci F, Yi M, Wills T, Chapman P, O'Keefe J (2008) Place Cell Firing Correlates with Memory Deficits and Amyloid Plaque Burden in Tg2576 Alzheimer Mouse Model. Proc Natl Acad Sci USA 105(22):7863–7868

    PubMed  CAS  Google Scholar 

  114. Puzzo D et al (2008) Picomolar Amyloid-{beta} Positively Modulates Synaptic Plasticity and Memory in Hippocampus. J Neurosci 28(53):14537–14545

    PubMed  CAS  Google Scholar 

  115. Ittner L et al (2010) Dendritic Function of Tau Mediates Amyloid-beta Toxicity in Alzheimer's Disease Mouse Models. Cell 142(3):387–397

    PubMed  CAS  Google Scholar 

  116. Chin J et al (2004) Fyn Kinase Modulates Synaptotoxicity, But Not Aberrant Sprouting, in Human Amyloid Precursor Protein Transgenic Mice. J Neurosci 24(19):4692–4697

    PubMed  CAS  Google Scholar 

  117. Lewis J (2001) Enhanced Neurofibrillary Degeneration in Transgenic Mice Expressing Mutant Tau and APP. Science 293:1487–1491

    PubMed  CAS  Google Scholar 

  118. Gotz J (2001) Tau and Transgenic Animal Models. Brain Res Rev 35(3):266–286

    PubMed  CAS  Google Scholar 

  119. Zhang C et al (2009) Presenilins are Essential for Regulating Neurotransmitter Release. Nature 460(7255):632–636

    PubMed  CAS  Google Scholar 

  120. Zhang D et al (2010) Inactivation of Presenilins Causes Pre-synaptic Impairment Prior to Post-synaptic Dysfunction. J Neurochem 115(5):1215–1221

    PubMed  CAS  Google Scholar 

  121. Brown T, Tran I, Backos D, Esteban J (2005) NMDA Receptor-dependent Activation of the Small GTPase Rab5 Drives the Removal of Synaptic AMPA Receptors during Hippocampal LTD. Neuron 45(1):81–94

    PubMed  CAS  Google Scholar 

  122. Laifenfeld D et al (2007) Rab5 Mediates an Amyloid Precursor Protein Signaling Pathway That Leads to Apoptosis. J Neurosci 27(27):7141–7153

    PubMed  CAS  Google Scholar 

  123. Andrews-Hanna JR et al (2007) Disruption of Large-Scale Brain Systems in Advanced Aging. Neuron 56(5):924–935

    PubMed  CAS  Google Scholar 

  124. Freeman WJ (1975) Mass Action in the Nervous System: Examination of the Neurophysiological Basis of Adaptive Behavior through the EE. Academic, New York, p 496

    Google Scholar 

  125. Villemagne VL et al (2010) Blood-Borne Amyloid-{beta} Dimer Correlates with Clinical Markers of Alzheimer's Disease. J Neurosci 30(18):6315–6322

    PubMed  CAS  Google Scholar 

  126. Craig-Schapiro R, Fagan AM, Holtzman DM (2009) Biomarkers of Alzheimer's Disease. Neurobiol Dis 35(2):128–140

    PubMed  CAS  Google Scholar 

  127. Gordon MN et al (2001) Correlation Between Cognitive Deficits and A[beta] Deposits in Transgenic APP + PS1 Mice. Neurobiol Aging 22(3):377–385

    PubMed  CAS  Google Scholar 

  128. Montgomery KS et al. (2009) Novel age-dependent learning deficits in a mouse model of Alzheimer's disease: Implications for translational research. Neurobiol Aging, in press

  129. Wesson DW, Levy E, Nixon RA, Wilson DW (2010) Olfactory Dysfunction Correlates with β-Amyloid Plaque Burden in an Alzheimer’s Disease Mouse Model. J Neurosci 30(2):505–514

    PubMed  CAS  Google Scholar 

  130. Hsiao K et al (1996) Correlative Memory Deficits, Abeta Elevation, and Amyloid Plaques in Transgenic Mice. Science 274(5284):99–102

    PubMed  CAS  Google Scholar 

  131. Westerman MA et al (2002) The Relationship Between Abeta and Memory in the Tg2576 Mouse Model of Alzheimer's Disease. J Neurosci 22(5):1858–1867

    PubMed  CAS  Google Scholar 

  132. Games D et al (1995) Alzheimer-type Neuropathology in Transgenic Mice Overexpressing V717F [beta]-amyloid Precursor Protein. Nature 373(6514):523–527

    PubMed  CAS  Google Scholar 

  133. Chen G et al (2000) A Learning Deficit Related to Age and Beta-amyloid Plaques in a Mouse Model of Alzheimer's Disease. Nature 408(6815):975–979

    PubMed  CAS  Google Scholar 

  134. Gandy S et al (2010) Days to Criterion as an Indicator of Toxicity Associated with Human Alzheimer Amyloid-beta Oligomers. Ann Neurol 68(2):220–230

    PubMed  CAS  Google Scholar 

  135. Cacace AT (2007) Aging, Alzheimer's Disease, and Hearing Impairment: Highlighting Relevant Issues and Calling for Additional Research. Am J Audiol 16(1):2–3

    PubMed  Google Scholar 

  136. Cronin-Golomb A, Rizzo J, Corkin S, Growdon J (1991) Visual Function in Alzheimer's Disease and Normal Aging. Ann NY Acad Sci 640:28–35

    PubMed  CAS  Google Scholar 

  137. Murphy C (1999) Loss of Olfactory Function in Dementing Disease. Physiol Behav 66(2):177–182

    PubMed  CAS  Google Scholar 

  138. Mesholam RI, Moberg PJ, Mahr RN, Doty RL (1998) Olfaction in Neurodegenerative Disease: A Meta-analysis of Olfactory Functioning in Alzheimer's and Parkinson's Diseases. Arch Neurol 55(1):84–90

    PubMed  CAS  Google Scholar 

  139. Macknin JB, Higuchi M, Lee VMY, Trojanowski JQ, Doty RL (2004) Olfactory Dysfunction Occurs in Transgenic Mice Overexpressing Human [tau] Protein. Brain Res 1000(1–2):174–178

    PubMed  CAS  Google Scholar 

  140. Guérin D, Sacquet J, Mandairon N, Jourdan F, Didier A (2009) Early Locus Coeruleus Degeneration and Olfactory Dysfunctions in Tg2576 Mice. Neurobiol Aging 30(2):272–283

    PubMed  Google Scholar 

  141. Yang DS et al (2011) Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits. Brain 134(1):258–277

    PubMed  Google Scholar 

  142. Pimplikar S (2009) Reassessing the Amyloid Cascade Hypothesis of Alzheimer's Disease. Int J Biochem Cell Biol 41(6):1261–1268

    PubMed  CAS  Google Scholar 

  143. Knupfer L, Spiegel R (1986) Differences in Olfactory Test Performance Between Normal Aged, Alzheimer and vascular type dementia individuals. Int J Geriatr Psychiatry 1(1):3–14

    Google Scholar 

  144. Doty RL, Shaman P, Applebaum SL, Giberson R, Sikorski L, Rosenberg L (1984) Smell Identification Ability: Changes with Age. Science 226:1441–1443

    PubMed  CAS  Google Scholar 

  145. Murphy C, Nordin S, Jinich S (1999) Very early decline in recognition memory for odors in Alzheimer's disease. Aging Neuropsychol Cogn 6:229–240

    Google Scholar 

  146. Wesson DW, Wilson DA, Nixon RA (2010) Should Olfactory Dysfunction be used as a Biomarker of Alzheimer's Disease? Expert Rev Neurother 10(5):633–635

    PubMed  Google Scholar 

  147. Serrano-Pozo A et al (2010) Beneficial Effect of Human Anti-amyloid-{beta} Active Immunization on Neurite Morphology and Tau Pathology. Brain 133(5):1312–1327

    PubMed  Google Scholar 

  148. Thakker DR et al (2009) Intracerebroventricular Amyloid-B Antibodies Reduce Cerebral Amyloid Angiopathy and Associated Micro-hemorrhages in Aged Tg2576 Mice. Proc Natl Acad Sci 106(11):4501–4506

    PubMed  CAS  Google Scholar 

  149. Janus C et al (2000) A[beta] Peptide Immunization Reduces Behavioural Impairment and Plaques in a Model of Alzheimer's Disease. Nature 408(6815):979–982

    PubMed  CAS  Google Scholar 

  150. Dodart J-C et al (2002) Immunization Reverses Memory Deficits without Reducing Brain A[beta] Burden in Alzheimer's Disease Model. Nat Neurosci 5(5):452–457

    PubMed  CAS  Google Scholar 

  151. Schenk D et al (1999) Immunization with amyloid-[beta] attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400(6740):173–177

    PubMed  CAS  Google Scholar 

  152. Jiang Q et al (2008) ApoE Promotes the Proteolytic Degradation of A[beta]. Neuron 58(5):681–693

    PubMed  CAS  Google Scholar 

  153. Zelcer N et al (2007) Attenuation of Neuroinflammation and Alzheimer's Disease Pathology by Liver x Receptors. Proc Natl Acad Sci 104(25):10601–10606

    PubMed  CAS  Google Scholar 

  154. Holcomb L et al (1998) Accelerated Alzheimer-type Phenotype in Transgenic Mice Carrying Both Mutant Amyloid Precursor Protein and Presenilin 1 Transgenes. Nat Med 4(1):97–100

    PubMed  CAS  Google Scholar 

  155. Borchelt DR et al (1997) Accelerated Amyloid Deposition in the Brains of Transgenic Mice Coexpressing Mutant Presenilin 1 and Amyloid Precursor Proteins. Neuron 19(4):939–945

    PubMed  CAS  Google Scholar 

  156. Mi W et al (2007) Cystatin C Inhibits Amyloid-[beta] Deposition in Alzheimer's Disease Mouse Models. Nat Genet 39(12):1440–1442

    PubMed  CAS  Google Scholar 

  157. Kaeser SA et al (2007) Cystatin C Modulates Cerebral [beta]-amyloidosis. Nat Genet 39(12):1437–1439

    PubMed  CAS  Google Scholar 

  158. Park JH, Bonthius PJ, Tsai H-W, Bekiranov S, Rissman EF (2010) Amyloid beta Precursor Protein Regulates Male Sexual Behavior. J Neurosci 30(30):9967–9972

    PubMed  CAS  Google Scholar 

  159. Wesson DW, Wilson DA (2011) Age and gene overexpression interact to abolish nesting behavior in Tg2576 amyloid precursor protein (APP) mice. Behav Brain Res 216(1):408–413

    PubMed  CAS  Google Scholar 

  160. Deacon R et al (2008) Age-dependent and -independent Behavioral Deficits in Tg2576 Mice. Behav Brain Res 189(1):126–138

    PubMed  CAS  Google Scholar 

  161. Garcia-Osta A, Alberini CM (2009) Amyloid Beta Mediates Memory Formation. Learn Mem 16(4):267–272

    PubMed  CAS  Google Scholar 

  162. Tanemura K et al (2002) Neurodegeneration with Tau Accumulation in a Transgenic Mouse Expressing V337M Human Tau. J Neurosci 22(1):133–141

    PubMed  CAS  Google Scholar 

  163. Le Corre S et al (2006) An inhibitor of Tau Hyperphosphorylation Prevents Severe Motor Impairments in Tau Transgenic Mice. Proc Natl Acad Sci USA 103(25):9673–9678

    PubMed  Google Scholar 

  164. Scattoni M et al (2010) Early Behavioural Markers of Disease in P301S Tau Transgenic Mice. Behav Brain Res 208(1):250–257

    PubMed  CAS  Google Scholar 

  165. Morgan D et al (2008) Apparent Behavioral Benefits of Tau Overexpression in P301L Tau Transgenic Mice. J Alzheimers Dis 15(4):605–614

    PubMed  CAS  Google Scholar 

  166. Wilson MA, Tonegawa S (1997) Synaptic Plasticity, Place Cells and Spatial Memory: Study with Second Generation Knockouts. Trends Neurosci 20(3):102–106

    PubMed  CAS  Google Scholar 

  167. McHugh TJ, Blum KI, Tsien JZ, Tonegawa S, Wilson MA (1996) Impaired Hippocampal Representation of Space in CA1-specific NMDAR1 Knockout Mice. Cell 87(7):1339–1349

    PubMed  CAS  Google Scholar 

  168. Tsien JZ, Huerta PT, Tonegawa S (1996) The Essential Role of hippocampal CA1 NMDA Receptor-dependent Synaptic Plasticity in Spatial Memory. Cell 87(7):1327–1338

    PubMed  CAS  Google Scholar 

  169. Buckner RL et al (2009) Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer's Disease. J Neurosci 29(6):1860–1873

    PubMed  CAS  Google Scholar 

  170. Regehr WG, Connor JA, Tank DW (1989) Optical Imaging of Calcium Accumulation in Hippocampal Pyramidal Cells during Synaptic Activation. Nature 341(6242):533–536

    PubMed  CAS  Google Scholar 

  171. Wachowiak M, Cohen LB (2001) Representation of Odorants by Receptor Neuron Input to the Mouse Olfactory Bulb. Neuron 32(4):723–735

    PubMed  CAS  Google Scholar 

  172. Oertner TG, Sabatini BL, Nimchinsky EA, Svoboda K (2002) Facilitation at Single Synapses Probed with Optical Quantal Analysis. Nat Neurosci 5(7):657–664

    PubMed  CAS  Google Scholar 

  173. Helmchen F, Fee MS, Tank DW, Denk W (2001) A Miniature Head-mounted Two-Photon Microscope. High-resolution Brain Imaging in Freely Moving Animals. Neuron 31(6):903–912

    PubMed  CAS  Google Scholar 

  174. Knopfel T, Diez-Garcia J, Akemann W (2006) Optical Probing of Neuronal Circuit Dynamics: Genetically Encoded Versus Classical Fluorescent Sensors. Trends Neurosci 29(3):160–166

    PubMed  Google Scholar 

  175. Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo Two-photon Calcium Imaging of Neuronal Networks. PNAS 100(12):7319–7324

    PubMed  CAS  Google Scholar 

  176. Yaksi E, Friedrich RW (2006) Reconstruction of Firing Rate Changes Across Neuronal Populations by Temporally Deconvolved Ca2+ Imaging. Nat Methods 3(5):377–383

    PubMed  CAS  Google Scholar 

  177. Verhagen JV, Wesson DW, Netoff TI, White JA, Wachowiak M (2007) Sniffing Controls an Adaptive Filter of Sensory Input to the Olfactory Bulb. Nat Neurosci 10(5):631–639

    PubMed  CAS  Google Scholar 

  178. Komiyama T et al (2010) Learning-related Fine-scale Specificity Imaged in Motor Cortex Circuits of Behaving Mice. Nature 464(7292):1182–1186

    PubMed  CAS  Google Scholar 

  179. Wesson DW, Carey RM, Verhagen JV, Wachowiak M (2008) Rapid Encoding and Perception of Novel Odors in the Rat. PLoS Biol 6(4):e82

    PubMed  Google Scholar 

  180. Morris RGM, Garrud P, Rawlins JNP, O'Keefe J (1982) Place Navigation Impaired in Rats with Hippocampal Lesions. Nature 297(5868):681–683

    PubMed  CAS  Google Scholar 

  181. Schellinck HM, Cyr DP, Brown RE et al (2010) How Many Ways Can Mouse Behavioral Experiments Go Wrong? Confounding Variables in Mouse Models of Neurodegenerative Diseases and How to Control Them. Adv Study Behav 41:255–366

    Google Scholar 

  182. Colino A, Malenka RC (1993) Mechanisms Underlying Induction of Long-term Potentiation in Rat Medial and Lateral Perforant Paths In vitro. J Neurophysiol 69(4):1150–1159

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank two anonymous reviewers for kindly providing most thoughtful insights and critiques which improved this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Wesson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wesson, D.W., Nixon, R.A., Levy, E. et al. Mechanisms of Neural and Behavioral Dysfunction in Alzheimer’s Disease. Mol Neurobiol 43, 163–179 (2011). https://doi.org/10.1007/s12035-011-8177-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-011-8177-1

Keywords

Navigation