Skip to main content
Log in

Tauroursodeoxycholic Acid Prevents MPTP-Induced Dopaminergic Cell Death in a Mouse Model of Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mitochondrial dysfunction and oxidative stress are implicated in the neurodegenerative process in Parkinson’s disease (PD). Moreover, c-Jun N-terminal kinase (JNK) plays an important role in dopaminergic neuronal death in substantia nigra pars compacta. Tauroursodeoxycholic acid (TUDCA) acts as a mitochondrial stabilizer and anti-apoptotic agent in several models of neurodegenerative diseases. Here, we investigated the role of TUDCA in preventing 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurodegeneration in a mouse model of PD. We evaluated whether TUDCA modulates MPTP-induced degeneration of dopaminergic neurons in the nigrostriatal axis, and if that can be explained by regulation of JNK phosphorylation, reactive oxygen species (ROS) production, glutathione S-transferase (GST) catalytic activation, and Akt signaling, using C57BL/6 glutathione S-transferase pi (GSTP) null mice. TUDCA efficiently protected against MPTP-induced dopaminergic degeneration. We have previously demonstrated that exacerbated JNK activation in GSTP null mice resulted in increased susceptibility to MPTP neurotoxicity. Interestingly, pre-treatment with TUDCA prevented MPTP-induced JNK phosphorylation in mouse midbrain and striatum. Moreover, the anti-oxidative role of TUDCA was demonstrated in vivo by impairment of ROS production in the presence of MPTP. Finally, results herein suggest that the survival pathway activated by TUDCA involves Akt signaling, including downstream Bad phosphorylation and NF-κB activation. We conclude that TUDCA is neuroprotective in an in vivo model of PD, acting mainly by modulation of JNK activity and cellular redox thresholds, together with activation of the Akt pro-survival pathway. These results open new perspectives for the pharmacological use of TUDCA, as a modulator of neurodegeneration in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  PubMed  CAS  Google Scholar 

  2. Jackson-Lewis V, Blesa J, Przedborski S (2012) Animal models of Parkinson’s disease. Parkinsonism Relat Disord 18(Suppl 1):S183–S185

    Article  PubMed  Google Scholar 

  3. Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302(5646):819–822

    Article  PubMed  CAS  Google Scholar 

  4. Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, Laurie C, Gendelman HE (2006) Neuroinflammation, oxidative stress and the pathogenesis of Parkinson’s disease. Clin Neurosci Res 6(5):261–281

    Article  PubMed  CAS  Google Scholar 

  5. Vila M, Ramonet D, Perier C (2008) Mitochondrial alterations in Parkinson’s disease: new clues. J Neurochem 107(2):317–328

    Article  PubMed  CAS  Google Scholar 

  6. Miller RL, James-Kracke M, Sun GY, Sun AY (2009) Oxidative and inflammatory pathways in Parkinson’s disease. Neurochem Res 34(1):55–65

    Article  PubMed  CAS  Google Scholar 

  7. Chan P, DeLanney LE, Irwin I, Langston JW, Di Monte D (1991) Rapid ATP loss caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mouse brain. J Neurochem 57:348–351

    Article  PubMed  CAS  Google Scholar 

  8. Nicotra A, Parvez S (2002) Apoptotic molecules and MPTP-induced cell death. Neurotoxicol Teratol 24(5):599–605

    Article  PubMed  CAS  Google Scholar 

  9. Kuan CY, Burke RE (2005) Targeting the JNK signaling pathway for stroke and Parkinson’s diseases therapy. Curr Drug Targets CNS Neurol Disord 4(1):63–67

    Article  PubMed  CAS  Google Scholar 

  10. Peng J, Andersen JK (2003) The role of c-Jun N-terminal kinase (JNK) in Parkinson’s disease. IUBMB Life 55(4-5):267–271

    Article  PubMed  CAS  Google Scholar 

  11. Hunot S, Vila M, Teismann P, Davis RJ, Hirsch EC, Przedborski S, Rakic P, Flavell RA (2004) JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 101(2):665–670

    Article  PubMed  CAS  Google Scholar 

  12. Nishi K (1997) Expression of c-Jun in dopaminergic neurons of the substantia nigra in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Brain Res 771(1):133–141

    Article  PubMed  CAS  Google Scholar 

  13. Saporito MS, Thomas BA, Scott RW (2000) MPTP activates c-Jun NH(2)-terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo. J Neurochem 75(3):1200–1208

    Article  PubMed  CAS  Google Scholar 

  14. Castro-Caldas M, Neves Carvalho A, Rodrigues E, Henderson C, Wolf CR, Gama MJ (2012) Glutathione S-transferase pi mediates MPTP-induced c-Jun N-terminal kinase activation in the nigrostriatal pathway. Mol Neurobiol 45(3):466–477

    Google Scholar 

  15. Wang W, Shi L, Xie Y, Ma C, Li W, Su X, Huang S, Chen R, Zhu Z, Mao Z, Han Y, Li M (2004) SP600125, a new JNK inhibitor, protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Neurosci Res 48(2):195–202

    Article  PubMed  CAS  Google Scholar 

  16. Pan J, Qian J, Zhang Y, Ma J, Wang G, Xiao Q, Chen S, Ding J (2010) Small peptide inhibitor of JNKs protects against MPTP-induced nigral dopaminergic injury via inhibiting the JNK-signaling pathway. Lab Invest 90(2):156–167

    Article  PubMed  CAS  Google Scholar 

  17. Lazaridis KN, Gores GJ, Lindor KD (2001) Ursodeoxycholic acid ‘mechanisms of action and clinical use in hepatobiliary disorders’. J Hepatol 35(1):134–146

    Article  PubMed  CAS  Google Scholar 

  18. Rodrigues CM, Fan G, Wong PY, Kren BT, Steer CJ (1998) Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production. Mol Med 4(3):165–178

    PubMed  CAS  Google Scholar 

  19. Ramalho RM, Ribeiro PS, Solá S, Castro RE, Steer CJ, Rodrigues CM (2004) Inhibition of the E2F-1/p53/Bax pathway by tauroursodeoxycholic acid in amyloid beta-peptide-induced apoptosis of PC12 cells. J Neurochem 90(3):567–575

    Article  PubMed  CAS  Google Scholar 

  20. Viana RJ, Steer CJ, Rodrigues CM (2011) Amyloid-β peptide-induced secretion of endoplasmic reticulum chaperone glycoprotein GRP94. J Alzheimers Dis 27(1):61–73

    PubMed  CAS  Google Scholar 

  21. Viana RJ, Ramalho RM, Nunes AF, Steer CJ, Rodrigues CM (2010) Modulation of amyloid-β peptide-induced toxicity through inhibition of JNK nuclear localization and caspase-2 activation. J Alzheimers Dis 22(2):557–568

    PubMed  CAS  Google Scholar 

  22. Rodrigues CM, Fan G, Ma X, Kren BT, Steer CJ (1998) A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J Clin Invest 101(12):2790–2799

    Article  PubMed  CAS  Google Scholar 

  23. Rodrigues CM, Ma X, Linehan-Stieers C, Fan G, Kren BT, Steer CJ (1999) Ursodeoxycholic acid prevents cytochrome c release in apoptosis by inhibiting mitochondrial membrane depolarization and channel formation. Cell Death Differ 6(9):842–854

    Article  PubMed  CAS  Google Scholar 

  24. Keene CD, Rodrigues CM, Eich T, Linehan-Stieers C, Abt A, Kren BT, Steer CJ, Low WC (2001) A bile acid protects against motor and cognitive deficits and reduces striatal degeneration in the 3-nitropropionic acid model of Huntington’s disease. Exp Neurol 171(2):351–360

    Article  PubMed  CAS  Google Scholar 

  25. Keene CD, Rodrigues CM, Eich T, Chhabra MS, Steer CJ, Low WC (2002) Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington’s disease. Proc Natl Acad Sci USA 99(16):10671–10676

    Article  PubMed  CAS  Google Scholar 

  26. Solá S, Castro RE, Laires PA, Steer CJ, Rodrigues CM (2003) Tauroursodeoxycholic acid prevents amyloid-beta peptide-induced neuronal death via a phosphatidylinositol 3-kinase-dependent signaling pathway. Mol Med 9(9-12):226–234

    Article  PubMed  Google Scholar 

  27. Ramalho RM, Borralho PM, Castro RE, Solá S, Steer CJ, Rodrigues CM (2006) Tauroursodeoxycholic acid modulates p53-mediated apoptosis in Alzheimer’s disease mutant neuroblastoma cells. J Neurochem 98(5):1610–1618

    Article  PubMed  CAS  Google Scholar 

  28. Solá S, Amaral JD, Borralho PM, Ramalho RM, Castro RE, Aranha MM, Steer CJ, Rodrigues CM (2006) Functional modulation of nuclear steroid receptors by tauroursodeoxycholic acid reduces amyloid beta-peptide-induced apoptosis. Mol Endocrinol 20(10):2292–2303

    Article  PubMed  Google Scholar 

  29. Viana RJ, Nunes AF, Castro RE, Ramalho RM, Meyerson J, Fossati S, Ghiso J, Rostagno A, Rodrigues CM (2009) Tauroursodeoxycholic acid prevents E22Q Alzheimer’s Abeta toxicity in human cerebral endothelial cells. Cell Mol Life Sci 66(6):1094–1104

    Article  PubMed  CAS  Google Scholar 

  30. Nunes AF, Amaral JD, Lo AC, Fonseca MB, Viana RJ, Callaerts-Vegh Z, D’Hooge R, Rodrigues CM (2012) TUDCA, a bile acid, attenuates amyloid precursor protein processing and amyloid-beta deposition in APP/PS1 mice. Mol Neurobiol 45(3):440–454

    Google Scholar 

  31. Rodrigues CM, Spellman SR, Solá S, Grande AW, Linehan-Stieers C, Low WC, Steer CJ (2002) Neuroprotection by a bile acid in an acute stroke model in the rat. J Cereb Blood Flow Metab 22(4):463–471

    Article  PubMed  CAS  Google Scholar 

  32. Rodrigues CM, Sola S, Nan Z, Castro RE, Ribeiro PS, Low WC, Steer CJ (2003) Tauroursodeoxycholic acid reduces apoptosis and protects against neurological injury after acute hemorrhagic stroke in rats. Proc Natl Acad Sci USA 100(10):6087–6092

    Article  PubMed  CAS  Google Scholar 

  33. Duan WM, Rodrigues CM, Zhao LR, Steer CJ, Low WC (2002) Tauroursodeoxycholic acid improves the survival and function of nigral transplants in a rat model of Parkinson’s disease. Cell Transplant 11(3):195–205

    PubMed  Google Scholar 

  34. Ved R, Saha S, Westlund B, Perier C, Burnam L, Sluder A, Hoener M, Rodrigues CM, Alfonso A, Steer C, Liu L, Przedborski S, Wolozin B (2005) Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of alpha-synuclein, parkin, and DJ-1 in Caenorhabditis elegans. J Biol Chem 280(52):42655–42668

    Article  PubMed  CAS  Google Scholar 

  35. Henderson CJ, Smith AG, Ure J, Brown K, Bacon EJ, Wolf CR (1998) Increased skin tumorigenesis in mice lacking pi class glutathione S-transferases. Proc Natl Acad Sci USA 95(9):5275–5280

    Article  PubMed  CAS  Google Scholar 

  36. Castro-Caldas M, Neves Carvalho A, Peixeiro I, Rodrigues E, Lechner MC, Gama MJ (2009) GSTpi expression in MPTP-induced dopaminergic neurodegeneration of C57BL/6 mouse midbrain and striatum. J Mol Neurosci 38(2):114–127

    Article  PubMed  CAS  Google Scholar 

  37. Kong XC, Zhang D, Qian C, Liu GT, Bao XQ (2011) FLZ, a novel HSP27 and HSP70 inducer, protects SH-SY5Y cells from apoptosis caused by MPP(+). Brain Res 1383:99–107

    Google Scholar 

  38. Latchman DS (2005) HSP27 and cell survival in neurones. Int J Hyperth 21(5):393–402

    Article  CAS  Google Scholar 

  39. Castro RE, Solá S, Ramalho RM, Steer CJ, Rodrigues CM (2004) The bile acid tauroursodeoxycholic acid modulates phosphorylation and translocation of bad via phosphatidylinositol 3-kinase in glutamate-induced apoptosis of rat cortical neurons. J Pharmacol Exp Ther 311(2):845–852

    Article  PubMed  CAS  Google Scholar 

  40. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274

    Article  PubMed  CAS  Google Scholar 

  41. Romashkova JA, Makarov SS (1999) NF-kappaB is a target of AKT in anti-apoptotic PDGF signaling. Nature 401(6748):86–90

    Article  PubMed  CAS  Google Scholar 

  42. Kane LP, Shapiro VS, Stokoe D, Weiss A (1999) Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol 9(11):601–604

    Google Scholar 

  43. Menegon A, Board PG, Blackburn AC, Mellick GD, Le Couteur DG (1998) Parkinson’s disease, pesticides, and glutathione transferase polymorphisms. Lancet 352(9137):1344–1346

    Google Scholar 

  44. Vilar R, Coelho H, Rodrigues E, Gama MJ, Rivera I, Taioli E, Lechner MC (2007) Association of A313 G polymorphism (GSTP1*B) in the glutathione-S-transferase P1 gene with sporadic Parkinson’s disease. Eur J Neurol 14(2):156–161

    Google Scholar 

  45. Tsang AH, Chung KK (2009) Oxidative and nitrosative stress in Parkinson’s disease. Biochim Biophys Acta 1792(7):643–650

    Google Scholar 

  46. Stetler RA, Cao G, Gao Y, Zhang F, Wang S, Weng Z, Vosler P, Zhang L, Signore A, Graham SH, Chen J (2008) Hsp27 protects against ischemic brain injury via attenuation of a novel stress-response cascade upstream of mitochondrial cell death signaling. J Neurosci 28(49):13038–13055

    Google Scholar 

  47. Adler V, Yin Z, Fuchs SY, Benezra M, Rosario L, Tew KD, Pincus MR, Sardana M, Henderson CJ, Wolf CR, Davis RJ, Ronai Z (1999) Regulation of JNK signaling by GSTp. EMBO J 18(5):1321–1334

    Google Scholar 

  48. Elsby R, Kitteringham NR, Goldring CE, Lovatt CA, Chamberlain M, Henderson CJ, Wolf CR, Park BK (2003) Increased constitutive c-Jun N-terminal kinase signaling in mice lacking glutathione S-transferase Pi. J Biol Chem 278(25):22243–22249

    Article  PubMed  CAS  Google Scholar 

  49. Yan LJ, Rajasekaran NS, Sathyanarayanan S, Benjamin IJ (2005) Mouse HSF1 disruption perturbs redox state and increases mitochondrial oxidative stress in kidney. Antioxid Redox Signal 7(3-4):465–471

    Google Scholar 

  50. Kitani K, Kanai S, Sato Y, Ohta M, Nokubo M (1994) Ursodeoxycholic acid reduces the systemic toxicity of 1,2-dichloro,4-nitrobenzene by stimulating hepatic glutathione S-transferase in mice. Life Sci 54(14):983–989

    Article  PubMed  CAS  Google Scholar 

  51. Wang XT, Pei DS, Xu J, Guan QH, Sun YF, Liu XM, Zhang GY (2007) Opposing effects of Bad phosphorylation at two distinct sites by Akt1 and JNK1/2 on ischemic brain injury. Cell Signal 19(9):1844–1856

    Article  PubMed  CAS  Google Scholar 

  52. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G (1997) Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278:687–689

    Google Scholar 

  53. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241

    Google Scholar 

  54. Parry GJ, Rodrigues CM, Aranha MM, Hilbert SJ, Davey C, Kelkar P, Low WC, Steer CJ (2010) Safety, tolerability, and cerebrospinal fluid penetration of ursodeoxycholic acid in patients with amyotrophic lateral sclerosis. Clin Neuropharmacol 33(1):17–21

    Google Scholar 

  55. Morrish PK, Rakshi JS, Bailey DL, Sawle GV, Brooks DJ (1998) Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with [18F]dopa PET. J Neurol Neurosurg Psychiatry 64(3):314–319

    Google Scholar 

Download references

Acknowledgments

Supported by Fundação para a Ciência e a Tecnologia (FCT) and FEDER through grants PPCDT/SAU-FCF/58171/2004 and PEst-OE/SAU/UI4013/2011, and Ph.D. fellowship SFRH/BD/39897/2007 (to ANC).

Statement of Conflicts of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Gama.

Additional information

M. Castro-Caldas and A. Neves Carvalho are joint first authors.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro-Caldas, M., Carvalho, A.N., Rodrigues, E. et al. Tauroursodeoxycholic Acid Prevents MPTP-Induced Dopaminergic Cell Death in a Mouse Model of Parkinson’s Disease. Mol Neurobiol 46, 475–486 (2012). https://doi.org/10.1007/s12035-012-8295-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8295-4

Keywords

Navigation