Skip to main content

Advertisement

Log in

Telomere Profiling: Toward Glioblastoma Personalized Medicine

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Despite a standard of care combining surgery, radiotherapy (RT), and temozolomide chemotherapy, the average overall survival (OS) of glioblastoma patients is only 15 months, and even far lower when the patient cannot benefit from this combination. Therefore, there is a strong need for new treatments, such as new irradiation techniques. Against this background, carbon ion hadrontherapy, a new kind of irradiation, leads to a greater biological response of the tumor, while minimizing adverse effects on healthy tissues in comparison with RT. As carbon ion hadrontherapy is restricted to RT-resistant patients, photon irradiation resistance biomarkers are needed. Long telomeres and high telomerase activity have been widely associated with photon radioresistance in other cancers. Moreover, telomere protection, telomere function, and telomere length (TL) also depend on the shelterin protein complex (TRF1, TRF2, TPP1, POT1, TIN2, and hRAP1). We thus decided to evaluate an enlarged telomeric status (TL, telomerase catalytic subunit, and the shelterin component expression level) as a potential radioresistance biomarker in vitro using cellular models and ex vivo using patient tumor biopsies. In addition, nothing was known about the role of telomeres in carbon ion response. We thus evaluated telomeric status after both types of irradiation. We report here a significant correlation between TL and the basal POT1 expression level and photon radioresistance, in vitro, and a significant increase in the OS of patients with long telomeres or a high POT1 level, in vivo. POT1 expression was predictive of patient response irrespective of the TL. Strikingly, these correlations were lost, in vitro, when considering carbon irradiation. We thus propose (1) a model of the implications of telomeric damage in the cell response to both types of irradiation and (2) assessment of the POT1 expression level and TL using patient tumor biopsies to identify radioresistant patients who could benefit from carbon hadrontherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Preusser M, de Ribaupierre S, Wohrer A, Erridge SC, Hegi M, Weller M, Stupp R (2011) Current concepts and management of glioblastoma. Ann Neurol 70(1):9–21. doi:10.1002/ana.22425

    Article  PubMed  Google Scholar 

  2. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110. doi:10.1016/j.ccr.2009.12.020

    Article  PubMed  CAS  Google Scholar 

  3. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003. doi:10.1056/NEJMoa043331

    Article  PubMed  CAS  Google Scholar 

  4. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. doi:10.1056/NEJMoa043330

    Article  PubMed  CAS  Google Scholar 

  5. Amelio D, Lorentini S, Schwarz M, Amichetti M (2010) Intensity-modulated radiation therapy in newly diagnosed glioblastoma: a systematic review on clinical and technical issues. Radiother Oncol 97(3):361–369. doi:10.1016/j.radonc.2010.08.018

    Article  PubMed  Google Scholar 

  6. Li L, Quang TS, Gracely EJ, Kim JH, Emrich JG, Yaeger TE, Jenrette JM, Cohen SC, Black P, Brady LW (2010) A phase II study of anti-epidermal growth factor receptor radioimmunotherapy in the treatment of glioblastoma multiforme. J Neurosurg 113(2):192–198. doi:10.3171/2010.2.JNS091211

    Article  PubMed  Google Scholar 

  7. Mizoe JE, Tsujii H, Hasegawa A, Yanagi T, Takagi R, Kamada T, Tsuji H, Takakura K (2007) Phase I/II clinical trial of carbon ion radiotherapy for malignant gliomas: combined X-ray radiotherapy, chemotherapy, and carbon ion radiotherapy. Int J Radiat Oncol Biol Phys 69(2):390–396

    Article  PubMed  CAS  Google Scholar 

  8. Allen C, Borak TB, Tsujii H, Nickoloff JA (2011) Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy. Mutat Res 711(1–2):150–157. doi:10.1016/j.mrfmmm.2011.02.012

    PubMed  CAS  Google Scholar 

  9. Maucort-Boulch D, Baron MH, Pommier P, Weber DC, Mizoe JE, Rochat J, Boissel JP, Balosso J, Tsujii H, Amsallem E (2010) Rationale for carbon ion therapy in high-grade glioma based on a review and a meta-analysis of neutron beam trials. Cancer Radiother 14(1):34–41. doi:10.1016/j.canrad.2009.08.141

    Article  PubMed  CAS  Google Scholar 

  10. Boldrini L, Pistolesi S, Gisfredi S, Ursino S, Ali G, Pieracci N, Basolo F, Parenti G, Fontanini G (2006) Telomerase activity and hTERT mRNA expression in glial tumors. Int J Oncol 28(6):1555–1560

    PubMed  CAS  Google Scholar 

  11. Akiyama M, Yamada O, Kanda N, Akita S, Kawano T, Ohno T, Mizoguchi H, Eto Y, Anderson KC, Yamada H (2002) Telomerase overexpression in K562 leukemia cells protects against apoptosis by serum deprivation and double-stranded DNA break inducing agents, but not against DNA synthesis inhibitors. Cancer Lett 178(2):187–197

    Article  PubMed  CAS  Google Scholar 

  12. Serakinci N, Christensen R, Graakjaer J, Cairney CJ, Keith WN, Alsner J, Saretzki G, Kolvraa S (2007) Ectopically hTERT expressing adult human mesenchymal stem cells are less radiosensitive than their telomerase negative counterpart. Exp Cell Res 313(5):1056–1067

    Article  PubMed  CAS  Google Scholar 

  13. Gomez-Millan J, Goldblatt EM, Gryaznov SM, Mendonca MS, Herbert BS (2007) Specific telomere dysfunction induced by GRN163L increases radiation sensitivity in breast cancer cells. Int J Radiat Oncol Biol Phys 67(3):897–905

    Article  PubMed  CAS  Google Scholar 

  14. Wesbuer S, Lanvers-Kaminsky C, Duran-Seuberth I, Bolling T, Schafer KL, Braun Y, Willich N, Greve B (2010) Association of telomerase activity with radio- and chemosensitivity of neuroblastomas. Radiat Oncol 5:66. doi:10.1186/1748-717X-5-66

    Article  PubMed  Google Scholar 

  15. Papanikolaou V, Athanassiou E, Dubos S, Dimou I, Papathanasiou I, Kitsiou-Tzeli S, Kappas C, Tsezou A (2011) hTERT regulation by NF-kappaB and c-myc in irradiated HER2-positive breast cancer cells. Int J Radiat Biol 87(6):609–621. doi:10.3109/09553002.2011.572112

    Article  PubMed  CAS  Google Scholar 

  16. Ram R, Uziel O, Eldan O, Fenig E, Beery E, Lichtenberg S, Nordenberg Y, Lahav M (2009) Ionizing radiation up-regulates telomerase activity in cancer cell lines by post-translational mechanism via ras/phosphatidylinositol 3-kinase/Akt pathway. Clin Cancer Res 15(3):914–923. doi:10.1158/1078-0432.CCR-08-0792

    Article  PubMed  CAS  Google Scholar 

  17. Kurvinen K, Rantanen V, Syrjanen S, Johansson B (2006) Radiation-induced effects on telomerase in gynecological cancer cell lines with different radiosensitivity and repair capacity. Int J Radiat Biol 82(12):859–867

    Article  PubMed  CAS  Google Scholar 

  18. Zhong YH, Liao ZK, Zhou FX, Xie CH, Xiao CY, Pan DF, Luo ZG, Liu SQ, Zhou YF (2008) Telomere length inversely correlates with radiosensitivity in human carcinoma cells with the same tissue background. Biochem Biophys Res Commun 367(1):84–89. doi:10.1016/j.bbrc.2007.12.078

    Article  PubMed  CAS  Google Scholar 

  19. Komuro Y, Watanabe T, Tsurita G, Muto T, Nagawa H (2005) Expression pattern of telomerase reverse transcriptase in rectal carcinoma predicts tumor radiosensitivity, local recurrence and disease-free survival. Hepato-Gastroenterology 52(64):985–989

    PubMed  CAS  Google Scholar 

  20. Ogawa Y, Nishioka A, Hamada N, Terashima M, Inomata T, Yoshida S, Seguchi H, Kishimoto S (1998) Changes in telomerase activity of advanced cancers of oral cavity and oropharynx during radiation therapy: correlation with clinical outcome. Int J Mol Med 2(3):301–307

    PubMed  CAS  Google Scholar 

  21. Tchirkov A, Rolhion C, Kemeny JL, Irthum B, Puget S, Khalil T, Chinot O, Kwiatkowski F, Perissel B, Vago P, Verrelle P (2003) Clinical implications of quantitative real-time RT-PCR analysis of hTERT gene expression in human gliomas. Br J Cancer 88(4):516–520

    Article  PubMed  CAS  Google Scholar 

  22. Hakin-Smith V, Jellinek DA, Levy D, Carroll T, Teo M, Timperley WR, McKay MJ, Reddel RR, Royds JA (2003) Alternative lengthening of telomeres and survival in patients with glioblastoma multiforme. Lancet 361(9360):836–838

    Article  PubMed  CAS  Google Scholar 

  23. Martinez P, Blasco MA (2011) Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer 11(3):161–176. doi:10.1038/nrc3025

    Article  PubMed  CAS  Google Scholar 

  24. Du G, Drexler GA, Friedland W, Greubel C, Hable V, Krucken R, Kugler A, Tonelli L, Friedl AA, Dollinger G (2011) Spatial dynamics of DNA damage response protein foci along the ion trajectory of high-LET particles. Radiat Res 176(6):706–715. doi:10.1667/RR2592.1

    Article  PubMed  CAS  Google Scholar 

  25. Iwadate Y, Mizoe J, Osaka Y, Yamaura A, Tsujii H (2001) High linear energy transfer carbon radiation effectively kills cultured glioma cells with either mutant or wild-type p53. Int J Radiat Oncol Biol Phys 50(3):803–808

    Article  PubMed  CAS  Google Scholar 

  26. Kamlah F, Hanze J, Arenz A, Seay U, Hasan D, Juricko J, Bischoff B, Gottschald OR, Fournier C, Taucher-Scholz G, Scholz M, Seeger W, Engenhart-Cabillic R, Rose F (2011) Comparison of the effects of carbon ion and photon irradiation on the angiogenic response in human lung adenocarcinoma cells. Int J Radiat Oncol Biol Phys 80(5):1541–1549. doi:10.1016/j.ijrobp.2011.03.033

    Article  PubMed  CAS  Google Scholar 

  27. Cui X, Oonishi K, Tsujii H, Yasuda T, Matsumoto Y, Furusawa Y, Akashi M, Kamada T, Okayasu R (2011) Effects of carbon ion beam on putative colon cancer stem cells and its comparison with X-rays. Cancer Res 71(10):3676–3687. doi:10.1158/0008-5472.CAN-10-2926

    Article  PubMed  CAS  Google Scholar 

  28. Rieken S, Habermehl D, Wuerth L, Brons S, Mohr A, Lindel K, Weber K, Haberer T, Debus J, Combs SE (2011) Carbon ion irradiation inhibits glioma cell migration through downregulation of integrin expression. Int J Radiat Oncol Biol Phys. doi:10.1016/j.ijrobp.2011.06.2004

  29. Alphonse G, Aloy MT, Broquet P, Gerard JP, Louisot P, Rousson R, Rodriguez-Lafrasse C (2002) Ceramide induces activation of the mitochondrial/caspases pathway in Jurkat and SCC61 cells sensitive to gamma-radiation but activation of this sequence is defective in radioresistant SQ20B cells. Int J Radiat Biol 78(9):821–835

    Article  PubMed  CAS  Google Scholar 

  30. Beuve M, Alphonse G, Maalouf M, Colliaux A, Battiston-Montagne P, Jalade P, Balanzat E, Demeyer A, Bajard M, Rodriguez-Lafrasse C (2008) Radiobiologic parameters and local effect model predictions for head-and-neck squamous cell carcinomas exposed to high linear energy transfer ions. Int J Radiat Oncol Biol Phys 71(2):635–642

    Article  PubMed  CAS  Google Scholar 

  31. Poncet D, Belleville A, t’kint de Roodenbeke C, Roborel de Climens A, Ben Simon E, Merle-Beral H, Callet-Bauchu E, Salles G, Sabatier L, Delic J, Gilson E (2008) Changes in the expression of telomere maintenance genes suggest global telomere dysfunction in B-chronic lymphocytic leukemia. Blood 111(4):2388–2391

    Article  PubMed  CAS  Google Scholar 

  32. Leteurtre F, Li X, Gluckman E, Carosella ED (1997) Telomerase activity during the cell cycle and in gamma-irradiated hematopoietic cells. Leukemia 11(10):1681–1689

    Article  PubMed  CAS  Google Scholar 

  33. Neuhof D, Ruess A, Wenz F, Weber KJ (2001) Induction of telomerase activity by irradiation in human lymphoblasts. Radiat Res 155(5):693–697

    Article  PubMed  CAS  Google Scholar 

  34. Satra M, Tsougos I, Papanikolaou V, Theodorou K, Kappas C, Tsezou A (2006) Correlation between radiation-induced telomerase activity and human telomerase reverse transcriptase mRNA expression in HeLa cells. Int J Radiat Biol 82(6):401–409

    Article  PubMed  CAS  Google Scholar 

  35. Hyeon Joo O, Hande MP, Lansdorp PM, Natarajan AT (1998) Induction of telomerase activity and chromosome aberrations in human tumour cell lines following X-irradiation. Mutat Res 401(1–2):121–131

    PubMed  CAS  Google Scholar 

  36. He X, Qiao Q, Ge N, Nan J, Shen S, Wang Z, Yang Y, Bao G (2010) Irradiation-induced telomerase activity and gastric cancer risk: a case–control analysis in a Chinese Han population. BMC Cancer 10:312. doi:10.1186/1471-2407-10-312

    Article  PubMed  Google Scholar 

  37. Neuhof D, Bischof M, Debus J, Weber KJ (2007) Telomerase activity in peripheral blood mononuclear cells after whole body irradiation. Oncol Rep 17(4):865–869

    PubMed  CAS  Google Scholar 

  38. Yajima T, Yagihashi A, Kameshima H, Kobayashi D, Hirata K, Watanabe N (2001) Telomerase reverse transcriptase and telomeric-repeat binding factor protein 1 as regulators of telomerase activity in pancreatic cancer cells. Br J Cancer 85(5):752–757

    Article  PubMed  CAS  Google Scholar 

  39. Loayza D, De Lange T (2003) POT1 as a terminal transducer of TRF1 telomere length control. Nature 423(6943):1013–1018

    Article  PubMed  CAS  Google Scholar 

  40. Chen YJ, Hakin-Smith V, Teo M, Xinarianos GE, Jellinek DA, Carroll T, McDowell D, MacFarlane MR, Boet R, Baguley BC, Braithwaite AW, Reddel RR, Royds JA (2006) Association of mutant TP53 with alternative lengthening of telomeres and favorable prognosis in glioma. Cancer Res 66(13):6473–6476

    Article  PubMed  CAS  Google Scholar 

  41. McDonald KL, McDonnell J, Muntoni A, Henson JD, Hegi ME, von Deimling A, Wheeler HR, Cook RJ, Biggs MT, Little NS, Robinson BG, Reddel RR, Royds JA (2010) Presence of alternative lengthening of telomeres mechanism in patients with glioblastoma identifies a less aggressive tumor type with longer survival. J Neuropathol Exp Neurol 69(7):729–736. doi:10.1097/NEN.0b013e3181e576cf

    Article  PubMed  Google Scholar 

  42. Sampl S, Pramhas S, Stern C, Preusser M, Marosi C, Holzmann K (2012) Expression of telomeres in astrocytoma WHO grade 2 to 4: TERRA level correlates with telomere length, telomerase activity, and advanced clinical grade. Transl Oncol 5(1):56–65

    PubMed  Google Scholar 

  43. Nakagami Y, Ito M, Hara T, Inoue T (2002) Loss of TRF2 by radiation-induced apoptosis in HL60 cells. Radiat Med 20(3):121–129

    PubMed  Google Scholar 

  44. Ning H, Li T, Zhao L, Li T, Li J, Liu J, Liu Z, Fan D (2006) TRF2 promotes multidrug resistance in gastric cancer cells. Cancer Biol Ther 5(8):950–956

    Article  PubMed  CAS  Google Scholar 

  45. Wu L, Multani AS, He H, Cosme-Blanco W, Deng Y, Deng JM, Bachilo O, Pathak S, Tahara H, Bailey SM, Deng Y, Behringer RR, Chang S (2006) Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 126(1):49–62

    Article  PubMed  CAS  Google Scholar 

  46. Perera SA, Maser RS, Xia H, McNamara K, Protopopov A, Chen L, Hezel AF, Kim CF, Bronson RT, Castrillon DH, Chin L, Bardeesy N, Depinho RA, Wong KK (2008) Telomere dysfunction promotes genome instability and metastatic potential in a K-ras p53 mouse model of lung cancer. Carcinogenesis 29(4):747–753. doi:10.1093/carcin/bgn050

    Article  PubMed  CAS  Google Scholar 

  47. Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, DePinho RA (2000) Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406(6796):641–645

    Article  PubMed  CAS  Google Scholar 

  48. Begus-Nahrmann Y, Hartmann D, Kraus J, Eshraghi P, Scheffold A, Grieb M, Rasche V, Schirmacher P, Lee HW, Kestler HA, Lechel A, Rudolph KL (2012) Transient telomere dysfunction induces chromosomal instability and promotes carcinogenesis. J Clin Invest 122(6):2283–2288. doi:10.1172/JCI61745

    Article  PubMed  CAS  Google Scholar 

  49. Salhab M, Jiang WG, Newbold RF, Mokbel K (2007) The expression of gene transcripts of telomere-associated genes in human breast cancer: correlation with clinico-pathological parameters and clinical outcome. Breast Cancer Res Treat 109:35–46

    Google Scholar 

  50. Fujii K, Sasahira T, Moriwaka Y, Oue N, Yasui W, Kuniyasu H (2008) Protection of telomeres 1 protein levels are associated with telomere length in gastric cancer. Int J Mol Med 21(5):599–604

    PubMed  CAS  Google Scholar 

  51. Tang T, Zhou FX, Lei H, Yu HJ, Xie CH, Zhou YF, Liu SQ (2009) Increased expression of telomere-related proteins correlates with resistance to radiation in human laryngeal cancer cell lines. Oncol Rep 21(6):1505–1509

    PubMed  CAS  Google Scholar 

  52. Drissi R, Wu J, Hu Y, Bockhold C, Dome JS (2011) Telomere shortening alters the kinetics of the DNA damage response after ionizing radiation in human cells. Cancer Prev Res (Phila) 4(12):1973–1981. doi:10.1158/1940-6207.CAPR-11-0069

    Article  CAS  Google Scholar 

  53. Soler D, Pampalona J, Tusell L, Genesca A (2009) Radiation sensitivity increases with proliferation-associated telomere dysfunction in nontransformed human epithelial cells. Aging Cell 8(4):414–425. doi:10.1111/j.1474-9726.2009.00488.x

    Article  PubMed  CAS  Google Scholar 

  54. Goytisolo FA, Samper E, Martin-Caballero J, Finnon P, Herrera E, Flores JM, Bouffler SD, Blasco MA (2000) Short telomeres result in organismal hypersensitivity to ionizing radiation in mammals. J Exp Med 192(11):1625–1636

    Article  PubMed  CAS  Google Scholar 

  55. Latre L, Tusell L, Martin M, Miro R, Egozcue J, Blasco MA, Genesca A (2003) Shortened telomeres join to DNA breaks interfering with their correct repair. Exp Cell Res 287(2):282–288

    Article  PubMed  CAS  Google Scholar 

  56. Wong KK, Chang S, Weiler SR, Ganesan S, Chaudhuri J, Zhu C, Artandi SE, Rudolph KL, Gottlieb GJ, Chin L, Alt FW, DePinho RA (2000) Telomere dysfunction impairs DNA repair and enhances sensitivity to ionizing radiation. Nat Genet 26(1):85–88

    Article  PubMed  CAS  Google Scholar 

  57. Bhattacharyya S, Sandy A, Groden J (2010) Unwinding protein complexes in ALTernative telomere maintenance. J Cell Biochem 109(1):7–15. doi:10.1002/jcb.22388

    PubMed  CAS  Google Scholar 

  58. Opresko PL, Mason PA, Podell ER, Lei M, Hickson ID, Cech TR, Bohr VA (2005) POT1 stimulates RecQ helicases WRN and BLM to unwind telomeric DNA substrates. J Biol Chem 280(37):32069–32080. doi:10.1074/jbc.M505211200

    Article  PubMed  CAS  Google Scholar 

  59. Flynn RL, Centore RC, O’Sullivan RJ, Rai R, Tse A, Songyang Z, Chang S, Karlseder J, Zou L (2011) TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA. Nature 471(7339):532–536. doi:10.1038/nature09772

    Article  PubMed  CAS  Google Scholar 

  60. Nakano T, Suzuki Y, Ohno T, Kato S, Suzuki M, Morita S, Sato S, Oka K, Tsujii H (2006) Carbon beam therapy overcomes the radiation resistance of uterine cervical cancer originating from hypoxia. Clin Cancer Res 12(7 Pt 1):2185–2190. doi:10.1158/1078-0432.CCR-05-1907

    Article  PubMed  CAS  Google Scholar 

  61. Oikawa S, Kawanishi S (1999) Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening. FEBS Lett 453(3):365–368

    Article  PubMed  CAS  Google Scholar 

  62. Chuang TC, Moshir S, Garini Y, Chuang AY, Young IT, Vermolen B, van den Doel R, Mougey V, Perrin M, Braun M, Kerr PD, Fest T, Boukamp P, Mai S (2004) The three-dimensional organization of telomeres in the nucleus of mammalian cells. BMC Biol 2:12. doi:10.1186/1741-7007-2-121741-7007-2-12

    Article  PubMed  Google Scholar 

  63. R Development Core Team (2005) R: A language and environment for statistical computing, reference index version 2.2.1. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0. Available at http://www.R-project.org

Download references

Acknowledgments

This work was supported by “La Ligue Nationale contre le Cancer” (comité de la Saône), the “Association pour la Recherche contre le Cancer” (ARC), the “Association des Neuro-Oncologues d’Expression Française” (ANOCEF), and Geron Corp. We thank Mrs. Helen Morrin and Mr. Martin McFarlane of The Cancer Society Tissue Bank, The University of Otago Christchurch (New Zealand) for the glioma tissue samples and related information. We thank the GRRAAL (Gliomas Radiobiology Rhône-Alpes Auvergne Labs) project for sharing the GBM-derived cell lines, Guillaume Belz for his valuable help in “R” manipulation, and Sergei Gryaznov for his accurate corrections. Pr. Rodriguez-Lafrasse Laboratory is part of the Labex PRIMES (“Physique Radiobiologie Imagerie Médicale et Simulation”) and is supported by the PRRH (Programme Régional de Recherches en Hadronthérapie).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine Poncet.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 177 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrandon, S., Saultier, P., Carras, J. et al. Telomere Profiling: Toward Glioblastoma Personalized Medicine. Mol Neurobiol 47, 64–76 (2013). https://doi.org/10.1007/s12035-012-8363-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8363-9

Keywords

Navigation