Skip to main content
Log in

Zinc, a Neuroprotective Agent Against Aluminum-induced Oxidative DNA Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Aluminum (Al) has been considered as one of the most abundant elements and comprises nearly 8 % of the Earth's crust. Despite of its immense presence, studies regarding the molecular basis of its interaction with the physiological system are rather sparse. On the other hand, zinc (Zn), an essential micronutrient, has been regarded as the second most important metal for brain functioning. The objective of the present study was to investigate the protective potential of Zn, if any, during Al-induced detrimental effects on DNA, tritiated thymidine uptake as well as expression of stress marker genes and proteins in rat brain. Male Sprague–Dawley rats weighing 140–160 g were divided into four different groups viz.: normal control, Al treated (100 mg/kg b wt/day via oral gavage), Zn treated (227 mg/l in drinking water), and combined Al and Zn treated. All the treatments were carried out for a total duration of 8 weeks. Agarose gel electrophoresis revealed DNA laddering pattern and comets in the rat brain following Al treatment, which however, were attenuated upon Zn treatment. Further, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells, number of apoptotic brain cells, and uptake of tritiated thymidine were increased after Al treatment but were decreased upon Zn supplementation. Western blot and mRNA expressions of p53 and nuclear factor κB (NF-κB) were also found to be significantly elevated after Al treatment, which however, were reversed following Zn treatment. Hence, Zn shall prove to be an effective agent in mitigating the detrimental effects caused by Al in the rat brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Carri MT, Ferri A, Cozzolino M, Calabrese L, Rotilio GV (2003) Neurodegeneration in amyotrophic lateral sclerosis: the role of oxidative stress and altered homeostasis of metals. Brain Res Bull 61:365–374

    Article  PubMed  CAS  Google Scholar 

  2. Bolognin S, Messori L, Zatta P (2009) Metal ion physiopathology in neurode generative disorders. Neuromolecular Med 11:223–238

    Article  PubMed  CAS  Google Scholar 

  3. Rivera-Mancía S, Pérez-Neri I, Ríos C, Tristán-López L, Rivera-Espinosa L, Montes S (2010) The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact 186:184–199

    Article  PubMed  Google Scholar 

  4. Garcia T, Esparza JL, Nogués MR, Romeu M, Domingo JL, Gómez M (2010) Oxidative stress status and RNA expression in hippocampus of an animal model of Alzheimer's disease after chronic exposure to aluminum. Hippocampus 20:218–225

    PubMed  CAS  Google Scholar 

  5. Ribes D, Colomina MT, Vicens P, Domingo JL (2010) Impaired spatial learning and unaltered neurogenesis in a transgenic model of Alzheimer's disease after oral aluminum exposure. Curr Alzheimer Res 7:401–408

    Article  PubMed  CAS  Google Scholar 

  6. Walton JR (2010) Evidence for participation of aluminum in neurofibrillary tangle formation and growth in Alzheimer's disease. J Alzheimers Dis 22:65–72

    PubMed  CAS  Google Scholar 

  7. Cooke K, Gould MH (1991) The health effects of aluminium—a review. J R Soc Health 111:163–168

    Article  PubMed  CAS  Google Scholar 

  8. Soni MG, White SM, Flamm WG, Burdock GA (2001) Safety evaluation of dietary aluminum. Regul Toxicol Pharmacol 33:66–79

    Article  PubMed  CAS  Google Scholar 

  9. Yaman M, Güneş M, Bakirdere S (2003) Contamination of aluminium from cooking utensils and yogurt containers. Bull Environ Contam Toxicol 70:437–442

    Article  PubMed  CAS  Google Scholar 

  10. Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J, Mahfouz AM, Rondeau V (2007) Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Toxicol Environ Health B Crit Rev 10:1–269

    PubMed  CAS  Google Scholar 

  11. Cao H, Qiao L, Zhang H, Chen J (2010) Exposure and risk assessment for aluminium and heavy metals in Puerh tea. Sci Total Environ 408:2777–2784

    Article  PubMed  CAS  Google Scholar 

  12. Kaizer RR, Corrêa MC, Spanevello RM, Morsch VM, Mazzanti CM, Gonçalves JF, Schetinger MR (2005) Acetylcholinesterase activation and enhanced lipid peroxidation after long-term exposure to low levels of aluminum on different mouse brain regions. J Inorg Biochem 99:1865–1870

    Article  PubMed  CAS  Google Scholar 

  13. Kumar V, Bal A, Gill KD (2009) Aluminium-induced oxidative DNA damage recognition and cell-cycle disruption in different regions of rat brain. Toxicology 264:137–144

    Article  PubMed  CAS  Google Scholar 

  14. Sumathi T, Shobana C, Kumari BR, Nandhini DN (2011) Protective role of Cynodon dactylon in ameliorating the aluminium-induced neurotoxicity in rat brain regions. Biol Trace Elem Res 144:843–853

    Article  PubMed  CAS  Google Scholar 

  15. Moumen R, Ait-Oukhatar N, Bureau F, Fleury C, Bouglé D, Arhan P, Neuville D, Viader F (2001) Aluminium increases xanthine oxidase activity and disturbs antioxidant status in the rat. J Trace Elem Med Biol 15:89–93

    Article  PubMed  CAS  Google Scholar 

  16. Rui D, Yongjian Y (2010) Aluminum chloride induced oxidative damage on cells derived from hippocampus and cortex of ICR mice. Brain Res 1324:96–102

    Article  PubMed  CAS  Google Scholar 

  17. Yellamma K, Saraswathamma S, Kumari BN (2010) Cholinergic system under aluminium toxicity in rat brain. Toxicol Int 17:106–112

    Article  PubMed  CAS  Google Scholar 

  18. Singla N, Dhawan DK (2012) Regulatory role of zinc during aluminium-induced altered carbohydrate metabolism in rat brain. J Neurosci Res 90:698–705

    Article  PubMed  CAS  Google Scholar 

  19. Swegert CV, Dave KR, Katyare SS (1999) Effect of aluminium-induced Alzheimer like condition on oxidative energy metabolism in rat liver, brain and heart mitochondria. Mech Ageing Dev 112:27–42

    Article  PubMed  CAS  Google Scholar 

  20. Niu PY, Niu Q, Zhang QL, Wang LP, He SE, Wu TC, Conti P, Di Gioacchino M, Boscolo P (2005) Aluminum impairs rat neural cell mitochondria in vitro. Int J Immunopathol Pharmacol 18:683–689

    PubMed  CAS  Google Scholar 

  21. Ghribi O, Herman MM, DeWitt DA, Forbes MS, Savory J (2001) Abeta (1-42) and aluminum induce stress in the endoplasmic reticulum in rabbit hippocampus, involving nuclear translocation of gadd 153 and NF-kappa B. Brain Res Mol Brain Res 96:30–38

    Article  PubMed  CAS  Google Scholar 

  22. Yang SJ, Lee JE, Lee KH, Huh JW, Choi SY, Cho SW (2004) Opposed regulation of aluminum-induced apoptosis by glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor in rat brains. Brain Res Mol Brain Res 127:146–149

    Article  PubMed  CAS  Google Scholar 

  23. Walton JR (2012) Aluminum disruption of calcium homeostasis and signal transduction resembles change that occurs in aging and Alzheimer's disease. J Alzheimers Dis 29:255–273

    PubMed  CAS  Google Scholar 

  24. Stefanidou M, Maravelias C, Dona A, Spiliopoulou C (2006) Zinc: a multipurpose trace element. Arch Toxicol 80:1–9

    Article  PubMed  CAS  Google Scholar 

  25. Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME (2012) Zinc and human health: an update. Arch Toxicol 86:521–534

    Article  PubMed  CAS  Google Scholar 

  26. An WL, Pei JJ, Nishimura T, Winblad B, Cowburn RF (2005) Zinc-induced anti-apoptotic effects in SH-SY5Y neuroblastoma cells via the extracellular signal-regulated kinase 1/2. Brain Res Mol Brain Res 135:40–47

    Article  PubMed  CAS  Google Scholar 

  27. Kahmann L, Uciechowski P, Warmuth S, Plümäkers B, Gressner AM, Malavolta M, Mocchegiani E, Rink L (2008) Zinc supplementation in the elderly reduces spontaneous inflammatory cytokine release and restores T cell functions. Rejuvenation Res 11:227–237

    Article  PubMed  CAS  Google Scholar 

  28. Sowa-Kucma M, Legutko B, Szewczyk B, Novak K, Znojek P, Poleszak E, Papp M, Pilc A, Nowak G (2008) Antidepressant-like activity of zinc: further behavioral and molecular evidence. J Neural Transm 115:1621–1628

    Article  PubMed  CAS  Google Scholar 

  29. Pavlica S, Gebhardt R (2010) Comparison of uptake and neuroprotective potential of seven zinc-salts. Neurochem Int 56:84–93

    Article  PubMed  CAS  Google Scholar 

  30. Joshi D, Mittal DK, Shukla S, Srivastav AK (2012) Therapeutic potential of N acetyl cysteine with antioxidants (Zn and Se) supplementation against dimethylmercury toxicity in male albino rats. Exp Toxicol Pathol 64:103–108

    Article  PubMed  CAS  Google Scholar 

  31. Gower-Winter SD, Levenson CW (2012) Zinc in the central nervous system: from molecules to behavior. Biofactors 38:186–193

    Article  PubMed  CAS  Google Scholar 

  32. Rudolf E, Cervinka M (2006) The role of intracellular zinc in chromium(VI)-induced oxidative stress, DNA damage and apoptosis. Chem Biol Interact 162:212–227

    Article  PubMed  CAS  Google Scholar 

  33. Bhalla P, Chadha VD, Dhawan DK (2007) Effectiveness of zinc in modulating lithium induced biochemical and behavioral changes in rat brain. Cell Mol Neurobiol 27:595–607

    Article  PubMed  CAS  Google Scholar 

  34. Takeda A (2001) Zinc homeostasis and functions of zinc in the brain. Biometals 14:343–351

    Article  PubMed  CAS  Google Scholar 

  35. Bitanihirwe BK, Cunningham MG (2009) Zinc: the brain's dark horse. Synapse 63:1029–1049

    Article  PubMed  CAS  Google Scholar 

  36. Liu J, Jiang Y, Huang C, Fang H, Fang H, Pang W (2010) Proteomic analysis reveals changes in the hippocampus protein pattern of rats exposed to dietary zinc deficiency. Electrophoresis 31:1302–1310

    Article  PubMed  CAS  Google Scholar 

  37. Suzuki H, Asakawa A, Li JB, Tsai M, Amitani H, Ohinata K, Komai M, Inui A (2011) Zinc as an appetite stimulator—the possible role of zinc in the progression of diseases such as cachexia and sarcopenia. Recent Pat Food Nutr Agric 3:226–231

    Article  PubMed  CAS  Google Scholar 

  38. Sindreu C, Storm DR (2011) Modulation of neuronal signal transduction and memory formation by synaptic zinc. Front Behav Neurosci 5:68

    Article  PubMed  CAS  Google Scholar 

  39. Toth K (2011) Zinc in neurotransmission. Annu Rev Nutr 31:139–153

    Article  PubMed  CAS  Google Scholar 

  40. Bhalla P, Singla N, Dhawan DK (2010) Potential of lithium to reduce aluminium-induced cytotoxic effects in rat brain. Biometals 23:197–206

    Article  PubMed  CAS  Google Scholar 

  41. Goel A, Dhawan DK (2001) Zinc supplementation prevents liver injury in chlorpyrifos-treated rats. Biol Trace Elem Res 82:185–200

    Article  PubMed  CAS  Google Scholar 

  42. Weiss S, Cataltepe O, Cole AJ (1996) Anatomical studies of DNA fragmentation in rat brain after systemic kainate administration. Neuroscience 74:541–551

    Article  PubMed  CAS  Google Scholar 

  43. Singh NP, Mccoy MT, Tice RR, Schneider ELA (1988) Single technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  PubMed  CAS  Google Scholar 

  44. Nikodemova M, Watters JJ (2011) Outbred ICR/CD1 mice display more severe neuro inflammation mediated by microglial TLR4/CD14 activation than inbred C57Bl/6 mice. Neuroscience 190:67–74

    Article  PubMed  CAS  Google Scholar 

  45. Crane R, Madelstam P (1960) The active transport of sugars by various preparation of hamster intestine. Biochim Biophys Acta 45:460–464

    Article  PubMed  CAS  Google Scholar 

  46. Towbin H, Staehelin T, Gordon J (1992) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Biotechnology 24:145–149

    PubMed  CAS  Google Scholar 

  47. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Follin-phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  48. Shrivastava S (2012) Combined effect of HEDTA and selenium against aluminum induced oxidative stress in rat brain. J Trace Elem Med Biol 26:210–214

    Article  PubMed  CAS  Google Scholar 

  49. Karlik SJ, Eichhorn GL, Lewis PN, Crapper DR (1980) Interaction of aluminum species with deoxyribonucleic acid. Biochemistry 19:5991–5998

    Article  PubMed  CAS  Google Scholar 

  50. Zhang RY, Liu Y, Pang DW, Cai RX, Qi YP (2002) Spectroscopic and voltammetric study on the binding of aluminium(III) to DNA. Anal Sci 18:761–766

    Article  PubMed  CAS  Google Scholar 

  51. Moselhy WA, Helmy NA, Abdel-Halim BR, Nabil TM, Abdel-Hamid MI (2012) Role of ginger against the reproductive toxicity of aluminium chloride in albino male rats. Reprod Domest Anim 47:335–343

    Article  PubMed  CAS  Google Scholar 

  52. Savory J, Rao JK, Huang Y, Letada PR, Herman MM (1999) Age-related hippocampal changes in Bcl-2:Bax ratio, oxidative stress, redox-active iron and apoptosis associated with aluminum-induced neurodegeneration: increased susceptibility with aging. Neurotoxicology 20:805–817

    PubMed  CAS  Google Scholar 

  53. Tuneva J, Chittur S, Boldyrev AA, Birman I, Carpenter DO (2006) Cerebellar granule cell death induced by aluminum. Neurotox Res 9:297–304

    Article  PubMed  CAS  Google Scholar 

  54. Zago MP, Mackenzie GG, Adamo AM, Keen CL, Oteiza PI (2005) Differential modulation of MAP kinases by zinc deficiency in IMR-32 cells: role of H2O2. Antioxid Redox Signal 7:1773–1782

    Article  PubMed  CAS  Google Scholar 

  55. Takeda A, Tamano H, Ibuki Y (2004) Change of zinc uptake under growth arrest and apoptosis. Anticancer Res 24:3869–3874

    PubMed  CAS  Google Scholar 

  56. Corniola RS, Tassabehji NM, Hare J, Sharma G, Levenson CW (2008) Zinc deficiency impairs neuronal precursor cell proliferation and induces apoptosis via p53-mediated mechanisms. Brain Res 1237:52–61

    Article  PubMed  CAS  Google Scholar 

  57. Adamo AM, Zago MP, Mackenzie GG, Aimo L, Keen CL, Keenan A, Oteiza PI (2010) The role of zinc in the modulation of neuronal proliferation and apoptosis. Neurotox Res 17:1–14

    Article  PubMed  CAS  Google Scholar 

  58. Niu Q, Yang Y, Zhang Q, Niu P, He S, Di Gioacchino M, Conti P, Boscolo P (2007) The relationship between Bcl-gene expression and learning and memory impairment in chronic aluminum-exposed rats. Neurotox Res 12:163–169

    Article  PubMed  CAS  Google Scholar 

  59. Johnson VJ, Kim SH, Sharma RP (2005) Aluminum-maltolate induces apoptosis and necrosis in neuro-2a cells: potential role for p53 signaling. Toxicol Sci 83:329–339

    Article  PubMed  CAS  Google Scholar 

  60. Pan R, Qiu S, Lu DX, Dong J (2008) Curcumin improves learning and memory ability and its neuroprotective mechanism in mice. Chin Med J (Engl) 121:832–839

    CAS  Google Scholar 

  61. Duffy JY, Miller CM, Rutschilling GL, Ridder GM, Clegg MS, Keen CL, Daston GP (2001) A decrease in intracellular zinc levels precedes the detection of early indicators of apoptosis in HL-60 cells. Apoptosis 6:161–172

    Article  PubMed  CAS  Google Scholar 

  62. Latha KS, Anitha S, Rao KS, Viswamitra MA (2002) Molecular understanding of aluminum-induced topological changes in (CCG)12 triplet repeats: relevance to neurological disorders. Biochim Biophys Acta 1588:56–64

    Article  PubMed  CAS  Google Scholar 

  63. Lankoff A, Banasik A, Duma A, Ochniak E, Lisowska H, Kuszewski T, Góźdź S, Wojcik A (2006) A comet assay study reveals that aluminium induces DNA damage and inhibits the repair of radiation-induced lesions in human peripheral blood lymphocytes. Toxicol Lett 161:27–36

    Article  PubMed  CAS  Google Scholar 

  64. Duan J, Nilsson L (2006) Effect of Zn2+ on DNA recognition and stability of the p53 DNA-binding domain. Biochemistry 45:7483–7492

    Article  PubMed  CAS  Google Scholar 

  65. Lukiw WJ, Percy ME, Kruck TP (2005) Nanomolar aluminum induces pro-inflammatory and pro-apoptotic gene expression in human brain cells in primary culture. J Inorg Biochem 99:1895–1898

    Article  PubMed  CAS  Google Scholar 

  66. Aimo L, Mackenzie GG, Keenan AH, Oteiza PI (2010) Gestational zinc deficiency affects the regulation of transcription factors AP-1, NF-κB and NFAT in fetal brain. J Nutr Biochem 21:1069–1075

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the University Grants Commission (UGC), New Delhi, India and the Department of Science and Technology (DST-INSPIRE), New Delhi, India for financial support.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Dhawan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singla, N., Dhawan, D.K. Zinc, a Neuroprotective Agent Against Aluminum-induced Oxidative DNA Injury. Mol Neurobiol 48, 1–12 (2013). https://doi.org/10.1007/s12035-013-8417-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8417-7

Keywords

Navigation