Skip to main content
Log in

Abortive Cell Cycle Events in the Brains of Scrapie-Infected Hamsters with Remarkable Decreases of PLK3/Cdc25C and Increases of PLK1/Cyclin B1

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Polo-like kinases (PLKs) consist of a family of kinases which play critical roles during multiple stages of cell cycle progression. Increase of PLK1 and decrease of PLK3 are associated with the developments and metastases of many types of human malignant tumors; however, the situations of PLKs in prion diseases are less understood. Using Western blots and immunohistochemical and immunofluorescent assays, marked increase of PLK1 and decrease of PLK3 were observed in the brains of scrapie strain 263K-infected hamsters, presenting obviously a time-dependent phenomenon along with disease progression. Similar alterations of PLKs were also detected in a scrapie infectious cell line SMB-S15. Both PLK1 and PLK3 were observed in neurons by confocal microscopy. Accompanying with the changes of PLKs in the brains of 263K-infected hamsters, Cdc25C and its phosphorylated forms (p-Cdc25C-Ser198 and p-Cdc25C-Ser216) were significantly down-regulated, whereas Cyclin B1 and PCNA were obviously up-regulated, while phospho-histone H3 remained almost unchanged. Moreover, exposure of the cytotoxic peptide PrP106-126 on the primary cultured cortical neuron cells induced similar changes of cellular PLKs and some cell cycle-related proteins, such as Cdc25C and its phosphorylated forms, phospho-histone H3. Those results illustrate obviously aberrant expressions of cell cycle regulatory proteins in the prion-infected neurons, which may lead to the cell cycle arrest at M phase. Possibly due to the ill-regulation of some key cell cycle events during prion infection, together with the fact that neurons are unable to complete mitosis, the cell cycle reentry in prion-infected neurons is definitely abortive, which may lead to neuron apoptosis and neuron degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Castilla J, Saa P, Hetz C, Soto C (2005) In vitro generation of infectious scrapie prions. Cell 121(2):195–206. doi:10.1016/j.cell.2005.02.011

    Article  CAS  PubMed  Google Scholar 

  2. Legname G, Baskakov IV, Nguyen HO, Riesner D, Cohen FE, DeArmond SJ, Prusiner SB (2004) Synthetic mammalian prions. Science 305(5684):673–676. doi:10.1126/science.1100195

    Article  CAS  PubMed  Google Scholar 

  3. Lopes JP, Oliveira CR, Agostinho P (2009) Cell cycle re-entry in Alzheimer's disease: a major neuropathological characteristic? Curr Alzheimer Res 6(3):205–212

    Article  CAS  PubMed  Google Scholar 

  4. Petersen RC (2000) Mild cognitive impairment: transition between aging and Alzheimer's disease. Neurologia 15(3):93–101

    CAS  PubMed  Google Scholar 

  5. van de Weerdt BC, Medema RH (2006) Polo-like kinases: a team in control of the division. Cell Cycle 5(8):853–864

    Article  PubMed  Google Scholar 

  6. Lane HA, Nigg EA (1996) Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J Cell Biol 135(6 Pt 2):1701–1713

    Article  CAS  PubMed  Google Scholar 

  7. Abrieu A, Brassac T, Galas S, Fisher D, Labbe JC, Doree M (1998) The Polo-like kinase Plx1 is a component of the MPF amplification loop at the G2/M-phase transition of the cell cycle in Xenopus eggs. J Cell Sci 111(Pt 12):1751–1757

    CAS  PubMed  Google Scholar 

  8. Sumara I, Gimenez-Abian JF, Gerlich D, Hirota T, Kraft C, de la Torre C, Ellenberg J, Peters JM (2004) Roles of polo-like kinase 1 in the assembly of functional mitotic spindles. Curr Biol 14(19):1712–1722. doi:10.1016/j.cub.2004.09.049

    Article  CAS  PubMed  Google Scholar 

  9. Neef R, Preisinger C, Sutcliffe J, Kopajtich R, Nigg EA, Mayer TU, Barr FA (2003) Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis. J Cell Biol 162(5):863–875. doi:10.1083/jcb.200306009

    Article  CAS  PubMed  Google Scholar 

  10. Toyoshima-Morimoto F, Taniguchi E, Nishida E (2002) Plk1 promotes nuclear translocation of human Cdc25C during prophase. EMBO Rep 3(4):341–348. doi:10.1093/embo-reports/kvf069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Toyoshima-Morimoto F, Taniguchi E, Shinya N, Iwamatsu A, Nishida E (2001) Polo-like kinase 1 phosphorylates cyclin B1 and targets it to the nucleus during prophase. Nature 410(6825):215–220. doi:10.1038/35065617

    Article  CAS  PubMed  Google Scholar 

  12. Donohue PJ, Alberts GF, Guo Y, Winkles JA (1995) Identification by targeted differential display of an immediate early gene encoding a putative serine/threonine kinase. J Biol Chem 270(17):10351–10357

    Article  CAS  PubMed  Google Scholar 

  13. Zimmerman WC, Erikson RL (2007) Finding Plk3. Cell Cycle 6(11):1314–1318

    Article  CAS  PubMed  Google Scholar 

  14. Seeburg DP, Pak D, Sheng M (2005) Polo-like kinases in the nervous system. Oncogene 24(2):292–298. doi:10.1038/sj.onc.1208277

    Article  CAS  PubMed  Google Scholar 

  15. Yang Y, Bai J, Shen R, Brown SAN, Komissarova E, Huang Y, Jiang N, Alberts GF, Costa M, Lu L, Winkles JA, Dai W (2008) Polo-like kinase 3 functions as a tumor suppressor and is a negative regulator of hypoxia-inducible factor-1 alpha under hypoxic conditions. Cancer Research 68(11):4077–4085. doi:10.1158/0008-5472.can-07-6182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Luo J, Liu X (2012) Polo-like kinase 1, on the rise from cell cycle regulation to prostate cancer development. Protein & Cell 3(3):182–197. doi:10.1007/s13238-012-2020-y

    Article  CAS  Google Scholar 

  17. Yao HL, Han J, Gao JM, Zhang J, Zhang BY, Guo YJ, Nie K, Gao C, Wang XF, Dong XP (2005) Comparative study of the effects of several chemical and physical treatments on the activity of protease resistance and infectivity of scrapie strain 263K. J Vet Med B Infect Dis Vet Public Health 52(10):437–443. doi:10.1111/j.1439-0450.2005.00897.x

    Article  CAS  PubMed  Google Scholar 

  18. Shi Q, Zhang BY, Gao C, Zhang J, Jiang HY, Chen C, Han J, Dong XP (2012) Mouse-adapted scrapie strains 139A and ME7 overcome species barrier to induce experimental scrapie in hamsters and changed their pathogenic features. Virol J 9:63. doi:10.1186/1743-422X-9-63

    Article  PubMed Central  PubMed  Google Scholar 

  19. Gao JM, Gao C, Han J, Zhou XB, Xiao XL, Zhang J, Chen L, Zhang BY, Hong T, Dong XP (2004) Dynamic analyses of PrP and PrP(Sc) in brain tissues of golden hamsters infected with scrapie strain 263K revealed various PrP forms. Biomed Environ Sci 17(1):8–20

    PubMed  Google Scholar 

  20. Zhang J, Chen L, Zhang BY, Han J, Xiao XL, Tian HY, Li BL, Gao C, Gao JM, Zhou XB, Ma GP, Liu Y, Xu CM, Dong XP (2004) Comparison study on clinical and neuropathological characteristics of hamsters inoculated with scrapie strain 263K in different challenging pathways. Biomed Environ Sci 17(1):65–78

    PubMed  Google Scholar 

  21. Hilgenberg LG, Smith MA (2007) Preparation of dissociated mouse cortical neuron cultures. J Vis Exp (10):562. doi:10.3791/562

  22. Xie S, Xie B, Lee MY, Dai W (2005) Regulation of cell cycle checkpoints by polo-like kinases. Oncogene 24(2):277–286. doi:10.1038/sj.onc.1208218

    Article  PubMed  Google Scholar 

  23. Myer DL, Bahassi EM, Stambrook PJ (2005) The Plk3–Cdc25 circuit. Oncogene 24(2):299–305. doi:10.1038/sj.onc.1208278

    Article  CAS  PubMed  Google Scholar 

  24. Wei Y, Mizzen CA, Cook RG, Gorovsky MA, Allis CD (1998) Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proc Natl Acad Sci U S A 95(13):7480–7484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Galand P, Degraef C (1989) Cyclin/PCNA immunostaining as an alternative to tritiated thymidine pulse labelling for marking S phase cells in paraffin sections from animal and human tissues. Cell Tissue Kinet 22(5):383–392

    CAS  PubMed  Google Scholar 

  26. Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini F (1993) Neurotoxicity of a prion protein fragment. Nature 362(6420):543–546. doi:10.1038/362543a0

    Article  CAS  PubMed  Google Scholar 

  27. Ettaiche M, Pichot R, Vincent JP, Chabry J (2000) In vivo cytotoxicity of the prion protein fragment 106–126. J Biol Chem 275(47):36487–36490. doi:10.1074/jbc.C000579200

    Article  CAS  PubMed  Google Scholar 

  28. Glover DM, Hagan IM, Tavares AA (1998) Polo-like kinases: a team that plays throughout mitosis. Genes Dev 12(24):3777–3787

    Article  CAS  PubMed  Google Scholar 

  29. de Cárcer G, Manning G, Malumbres M (2011) From Plk1 to Plk5: functional evolution of polo-like kinases. Cell Cycle 10(14):2255–2262. doi:10.4161/cc.10.14.16494

    Article  PubMed  Google Scholar 

  30. Eckerdt F, Yuan J, Strebhardt K (2005) Polo-like kinases and oncogenesis. Oncogene 24(2):267–276. doi:10.1038/sj.onc.1208273

    Article  CAS  PubMed  Google Scholar 

  31. Wang Z-X, Xue D, Liu Z-L, Lu B-B, Bian H-B, Pan X, Yin Y-M (2012) Overexpression of polo-like kinase 1 and its clinical significance in human non-small cell lung cancer. The International Journal of Biochemistry & Cell Biology 44(1):200–210. doi:10.1016/j.biocel.2011.10.017

    Article  CAS  Google Scholar 

  32. Yang Y, Bai J, Shen R, Brown SA, Komissarova E, Huang Y, Jiang N, Alberts GF, Costa M, Lu L, Winkles JA, Dai W (2008) Polo-like kinase 3 functions as a tumor suppressor and is a negative regulator of hypoxia-inducible factor-1 alpha under hypoxic conditions. Cancer Res 68(11):4077–4085. doi:10.1158/0008-5472.CAN-07-6182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Song B, Davis K, Liu XS, Lee HG, Smith M, Liu X (2011) Inhibition of Polo-like kinase 1 reduces beta-amyloid-induced neuronal cell death in Alzheimer's disease. Aging (Albany NY) 3(9):846–851

    CAS  Google Scholar 

  34. Harris PL, Zhu X, Pamies C, Rottkamp CA, Ghanbari HA, McShea A, Feng Y, Ferris DK, Smith MA (2000) Neuronal polo-like kinase in Alzheimer disease indicates cell cycle changes. Neurobiol Aging 21(6):837–841

    Article  CAS  PubMed  Google Scholar 

  35. Webber KM, Raina AK, Marlatt MW, Zhu X, Prat MI, Morelli L, Casadesus G, Perry G, Smith MA (2005) The cell cycle in Alzheimer disease: a unique target for neuropharmacology. Mech Ageing Dev 126(10):1019–1025. doi:10.1016/j.mad.2005.03.024

    Article  CAS  PubMed  Google Scholar 

  36. Martin SA, Ouchi T (2008) Cellular commitment to reentry into the cell cycle after stalled DNA is determined by site-specific phosphorylation of Chk1 and PTEN. Mol Cancer Ther 7(8):2509–2516. doi:10.1158/1535-7163.MCT-08-0199

    Article  CAS  PubMed  Google Scholar 

  37. Lopes JP, Oliveira CR, Agostinho P (2009) Cdk5 acts as a mediator of neuronal cell cycle re-entry triggered by amyloid-beta and prion peptides. Cell Cycle 8(1):97–104

    Article  CAS  PubMed  Google Scholar 

  38. Zhang J, Li H, Herrup K (2010) Cdk5 nuclear localization is p27-dependent in nerve cells: implications for cell cycle suppression and caspase-3 activation. Journal of Biological Chemistry 285(18):14052–14061. doi:10.1074/jbc.M109.068262

    Article  CAS  PubMed  Google Scholar 

  39. Chang K-H, de Pablo Y, H-p L, H-g L, Smith MA, Shah K (2010) Cdk5 is a major regulator of p38 cascade: relevance to neurotoxicity in Alzheimer’s disease. Journal of Neurochemistry. doi:10.1111/j.1471-4159.2010.06687.x

    Google Scholar 

  40. Dobashi Y, Kudoh T, Matsumine A, Toyoshima K, Akiyama T (1995) Constitutive overexpression of CDK2 inhibits neuronal differentiation of rat pheochromocytoma PC12 cells. J Biol Chem 270(39):23031–23037

    Article  CAS  PubMed  Google Scholar 

  41. Wang Z, Trope CG, Florenes VA, Suo Z, Nesland JM, Holm R (2010) Overexpression of CDC25B, CDC25C and phospho-CDC25C (Ser216) in vulvar squamous cell carcinomas are associated with malignant features and aggressive cancer phenotypes. BMC Cancer 10:233. doi:10.1186/1471-2407-10-233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Ouyang B, Li W, Pan H, Meadows J, Hoffmann I, Dai W (1999) The physical association and phosphorylation of Cdc25C protein phosphatase by Prk. Oncogene 18(44):6029–6036. doi:10.1038/sj.onc.1202983

    Article  CAS  PubMed  Google Scholar 

  43. el Bahassi M, Hennigan RF, Myer DL, Stambrook PJ (2004) Cdc25C phosphorylation on serine 191 by Plk3 promotes its nuclear translocation. Oncogene 23(15):2658–2663. doi:10.1038/sj.onc.1207425

    Article  CAS  Google Scholar 

  44. Tang L, Wang TT, Wu YT, Zhou CY, Huang HF (2009) High expression levels of cyclin B1 and Polo-like kinase 1 in ectopic endometrial cells associated with abnormal cell cycle regulation of endometriosis. Fertil Steril 91(4):979–987. doi:10.1016/j.fertnstert.2008.01.041

    Article  CAS  PubMed  Google Scholar 

  45. Stukenberg PT, Lustig KD, McGarry TJ, King RW, Kuang J, Kirschner MW (1997) Systematic identification of mitotic phosphoproteins. Curr Biol 7(5):338–348

    Article  CAS  PubMed  Google Scholar 

  46. Matsumoto-Taniura N, Pirollet F, Monroe R, Gerace L, Westendorf JM (1996) Identification of novel M phase phosphoproteins by expression cloning. Mol Biol Cell 7(9):1455–1469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Yaffe MP (1997) Mitochondrial morphogenesis: fusion factor for fly fertility. Curr Biol 7(12):R782–783

    Article  CAS  PubMed  Google Scholar 

  48. Soria JC, Jang SJ, Khuri FR, Hassan K, Liu D, Hong WK, Mao L (2000) Overexpression of cyclin B1 in early-stage non-small cell lung cancer and its clinical implication. Cancer Res 60(15):4000–4004

    CAS  PubMed  Google Scholar 

  49. Choi JA, Kim JY, Lee JY, Kang CM, Kwon HJ, Yoo YD, Kim TW, Lee YS, Lee SJ (2001) Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int J Oncol 19(4):837–844

    CAS  PubMed  Google Scholar 

  50. Vincent I, Jicha G, Rosado M, Dickson DW (1997) Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer's disease brain. J Neurosci 17(10):3588–3598

    CAS  PubMed  Google Scholar 

  51. Klein JA, Ackerman SL (2003) Oxidative stress, cell cycle, and neurodegeneration. J Clin Invest 111(6):785–793. doi:10.1172/JCI18182

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Yang Y, Geldmacher DS, Herrup K (2001) DNA replication precedes neuronal cell death in Alzheimer's disease. J Neurosci 21(8):2661–2668

    CAS  PubMed  Google Scholar 

  53. Krantic S, Mechawar N, Reix S, Quirion R (2005) Molecular basis of programmed cell death involved in neurodegeneration. Trends Neurosci 28(12):670–676. doi:10.1016/j.tins.2005.09.011

    Article  CAS  PubMed  Google Scholar 

  54. Wang GR, Shi S, Gao C, Zhang BY, Tian C, Dong CF, Zhou RM, Li XL, Chen C, Han J, Dong XP (2010) Changes of tau profiles in brains of the hamsters infected with scrapie strains 263 K or 139 A possibly associated with the alteration of phosphate kinases. BMC Infect Dis 10:86. doi:10.1186/1471-2334-10-86

    Article  PubMed Central  PubMed  Google Scholar 

  55. Satoh J, Obayashi S, Misawa T, Sumiyoshi K, Oosumi K, Tabunoki H (2009) Protein microarray analysis identifies human cellular prion protein interactors. Neuropathology and Applied Neurobiology 35(1):16–35. doi:10.1111/j.1365-2990.2008.00947.x

    Article  CAS  PubMed  Google Scholar 

  56. Busser J, Geldmacher DS, Herrup K (1998) Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer's disease brain. J Neurosci 18(8):2801–2807

    CAS  PubMed  Google Scholar 

  57. Nagy Z, Esiri MM, Smith AD (1997) Expression of cell division markers in the hippocampus in Alzheimer's disease and other neurodegenerative conditions. Acta Neuropathol 93(3):294–300

    Article  CAS  PubMed  Google Scholar 

  58. H-g L, Casadesus G, Nunomura A, Zhu X, Castellani RJ, Richardson SL, Perry G, Felsher DW, Petersen RB, Smith MA (2009) The neuronal expression of MYC causes a neurodegenerative phenotype in a novel transgenic mouse. The American Journal of Pathology 174(3):891–897. doi:10.2353/ajpath.2009.080583

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese National Natural Science Foundation Grant (81101302, 81273202), China Mega-Project for Infectious Disease (2011ZX10004-101, 2012ZX10004215), SKLID Development Grant (2012SKLID102), and Sci-tech Innovation Team of Jiangsu University (2008-018-02). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi-Xiang Shao or Xiao-Ping Dong.

Additional information

Hui Wang and Chan Tian contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

NeuN-specific IFA of the primary cultured rat cortical neurons. The images of NeuN (red), DAPI (blue) and merge are indicated above (PDF 42 kb)

Supplemental Fig. 2

Western blots of Cyclin the lysates of the cell line SMB-S15 and SMB-PS (left). Quantitative analyses of the gray numerical values of the blots vs. that of the individual β-actin are showed on the right. The average relative gray value is calculated from three independent blots and presented as mean ± SEM. **p<0.001 significant compared to controls are illustrated on the top (PDF 106 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Tian, C., Xu, Y. et al. Abortive Cell Cycle Events in the Brains of Scrapie-Infected Hamsters with Remarkable Decreases of PLK3/Cdc25C and Increases of PLK1/Cyclin B1. Mol Neurobiol 48, 655–668 (2013). https://doi.org/10.1007/s12035-013-8455-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8455-1

Keywords

Navigation