Skip to main content

Advertisement

Log in

Reciprocal Modulation Between Microglia and Astrocyte in Reactive Gliosis Following the CNS Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Reactive gliosis, also known as glial scar formation, is an inflammatory response characterized by the proliferation of microglia and astrocytes as well as astrocytic hypertrophy following injury in the central nervous system (CNS). The glial scar forms a physical and molecular barrier to isolate the injured area from adjacent normal nervous tissue for re-establishing the integrity of the CNS. It prevents the further spread of cellular damage but represents an obstacle to regrowing axons. In this review, we integrated the current findings to elucidate the tightly reciprocal modulation between activated microglia and astrocytes in reactive gliosis and proposed that modification of cellular response to the injury or cellular reprogramming in the glial scar could lead advances in axon regeneration and functional recovery after the CNS injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

CD:

Cluster of differentiation

ChABC:

Chondroitinase ABC

CSPGs:

Chondroitin sulfate proteoglycans

CXCL10 C-X-C:

motif chemokine 10

FABP7/BLBP:

Fatty acid binding protein 7 brain (aka: brain lipid binding protein)

FGFR3:

Fibroblast growth factor receptor 3

GFAP:

Glial fibrillary acidic protein

Glast:

Glutamate aspartate transporter

Id3:

Inhibitor of DNA-binding/differentiation protein 3

IFN-γ:

Interferon gamma

IL:

Interleukin

KSPGs:

Keratan sulfate proteoglycans

MHCII:

Major histocompatibility complex class II

NFI A/B:

Nuclear factor I protein A and B

PGE2:

Prostaglandin E2

Sox9:

Sex determining region Y-box 9

TGF-α and TGF-β:

Transforming growth factor alpha and beta

TNF-α:

Tumor necrosis factor alpha

References

  1. Bethea JR, Nagashima H, Acosta MC, Briceno C, Gomez F, Marcillo AE, Loor K, Green J, Dietrich WD (1999) Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotraum 16:851–863

    CAS  Google Scholar 

  2. Chi LY, Yu J, Zhu H, Li XG, Zhu SG, Kindy MS (2008) The dual role of tumor necrosis factor-alpha in the pathophysiology of spinal cord injury. Neurosci Lett 438:174–179

    CAS  PubMed  Google Scholar 

  3. Yong VW, Moumdjian R, Yong FP, Ruijs TC, Freedman MS, Cashman N, Antel JP (1991) Gamma-interferon promotes proliferation of adult human astrocytes in vitro and reactive gliosis in the adult mouse brain in vivo. P Natl Acad Sci USA 88:7016–7020

    CAS  Google Scholar 

  4. Wang XF, Huang LD, Yu PP, Hu JG, Yin L, Wang L, Xu XM, Lu PH (2006) Upregulation of type I interleukin-1 receptor after traumatic spinal cord injury in adult rats. Acta Neuropathol 111:220–228

    CAS  PubMed  Google Scholar 

  5. Fehlings MG, Hawryluk GWJ (2010) Scarring after spinal cord injury. J Neurosurg Spine 13:165–167

    PubMed  Google Scholar 

  6. Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol 209:294–301

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Zhang L, Zhang W-P, Chen K-D, Qian X-D, Fang S-H, Wei E-Q (2007) Caffeic acid attenuates neuronal damage, astrogliosis and glial scar formation in mouse brain with cryoinjury. Life Sci 80:530–537

    CAS  PubMed  Google Scholar 

  8. Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, Mucke L, Johnson MH, Sofroniew MV (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23:297–308

    CAS  PubMed  Google Scholar 

  9. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155

    CAS  PubMed  Google Scholar 

  10. Rock RB, Gekker G, Hu SX, Sheng WS, Cheeran M, Lokensgard JR, Peterson PK (2004) Role of microglia in central nervous system infections. Clin Microbiol Rev 17:942

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Morris L, Graham CF, Gordon S (1991) Macrophages in haemopoietic and other tissues of the developing mouse detected by the monoclonal antibody F4/80. Development 112:517–526

    CAS  PubMed  Google Scholar 

  12. Chan WY, Kohsaka S, Rezaie P (2007) The origin and cell lineage of microglia—new concepts. Brain Res Rev 53:344–354

    CAS  PubMed  Google Scholar 

  13. Hanisch U-K, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    CAS  PubMed  Google Scholar 

  14. Nobuta H, Ghiani CA, Paez PM, Spreuer V, Dong HM, Korsak RA, Manukyan A, Li JX, Vinters HV, Huang EJ, Rowitch DH, Sofroniew MV, Campagnoni AT, de Vellis J, Waschek JA (2012) STAT3-mediated astrogliosis protects myelin development in neonatal brain injury. Ann Neurol 72:750–765

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Rowitch DH (2004) Glial specification in the vertebrate neural tube. Nat Rev Neurosci 5:409–419

    CAS  PubMed  Google Scholar 

  16. Rowitch DH, Kriegstein AR (2010) Developmental genetics of vertebrate glial-cell specification. Nature 468:214–222

    CAS  PubMed  Google Scholar 

  17. Freeman MR (2010) Specification and morphogenesis of astrocytes. Science 330:774–778

    CAS  PubMed  Google Scholar 

  18. EL Bignami A, Dahl D, Uyeda CT (1972) Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res 28:351–354

    Google Scholar 

  19. Bushong EA, Martone ME, Ellisman MH (2004) Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int J Dev Neurosci 22:73–86

    PubMed  Google Scholar 

  20. Vaughn JE, Pease A (1967) Electron microscopy of the early postnatal development of fibrous astrocytes. Am J Anat 121:131–152

    CAS  PubMed  Google Scholar 

  21. Vaughn JE, Peters D (1967) Electron microscopy of classically stained astrocytes. J Comp Neurol 131:143–154

    CAS  PubMed  Google Scholar 

  22. Molofsky AV, Krencik R, Ullian EM, Tsai HH, Deneen B, Richardson WD, Barres BA, Rowitch DH (2012) Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 26:891–907

    CAS  PubMed  Google Scholar 

  23. Walz W (1989) Role of glial-cells in the regulation of the brain ion microenvironment. Prog Neurobiol 33:309–333

    CAS  PubMed  Google Scholar 

  24. Westergaard N, Sonnewald U, Schousboe A (1995) Metabolic trafficking between neurons and astrocytes—the glutamate glutamine cycle revisited. Dev Neurosci-Basel 17:203–211

    CAS  Google Scholar 

  25. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    PubMed Central  PubMed  Google Scholar 

  26. Navarrete M, Araque A (2011) Basal synaptic transmission: astrocytes rule! Cell 146:675–677

    CAS  PubMed  Google Scholar 

  27. Ihrie RA, Alvarez-Buylla A (2011) Lake-front property: a unique germinal niche by the lateral ventricles of the adult brain. Neuron 70:674–686

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch U-K, Mack M, Heikenwalder M, Bruck W, Priller J, Prinz M (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10:1544–1553

    CAS  PubMed  Google Scholar 

  29. Teeling JL, Perry VH (2009) Systemic infection and inflammation in acute CNS injury and chronic neurodegeneration: underlying mechanisms. Neuroscience 158:1062–1073

    CAS  PubMed  Google Scholar 

  30. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    CAS  PubMed  Google Scholar 

  31. Zhang DHX, Qian L, O’Callaghan JP, Hong J (2010) Astrogliosis in CNS pathologies: is there a role for microglia? Mol Neurobiol 41:232–241

    PubMed Central  PubMed  Google Scholar 

  32. Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    CAS  PubMed  Google Scholar 

  33. Chatzipanteli K, Garcia R, Marcillo AE, Loor KE, Kraydieh S, Dietrich WD (2002) Temporal and segmental distribution of constitutive and inducible nitric oxide synthases after traumatic spinal cord injury: effect of aminoguanidine treatment. J Neurotraum 19:639–651

    Google Scholar 

  34. Pearse DD, Chatzipanteli K, Marcillo AE, Bunge MB, Dietrich WD (2003) Comparison of iNOS inhibition by antisense and pharmacological inhibitors after spinal cord injury. J Neuropathol Exp Neurol 62:1096–1107

    CAS  PubMed  Google Scholar 

  35. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82

    CAS  PubMed  Google Scholar 

  36. Glezer I, Simard AR, Rivest S (2007) Neuroprotective role of the innate immune system by microglia. Neuroscience 147:867–883

    CAS  PubMed  Google Scholar 

  37. David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12:388–399

    CAS  PubMed  Google Scholar 

  38. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29:13435–13444

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Loane DJ, Byrnes KR (2010) Role of microglia in neurotrauma. Neurotherapeutics 7:366–377

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Sica A, Schioppa T, Mantovani A, Allavena P (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42:717–727

    CAS  PubMed  Google Scholar 

  41. Tanaka T, Huli J, Seder RA, Fazekas De St Groth B, Paul WE (1993) Interleukin-4 suppresses interleukin-2 and interferon-gamma production by naive T-cells stimulated by accessory cell-dependent receptor engagement. P Natl Acad Sci USA 90:5914–5918

    CAS  Google Scholar 

  42. Frei K, Lins H, Schwerdel C, Fontana A (1994) Antigen presentation in the central nervous system—the inhibitory effect of IL-10 on MHC class II expression and production of cytokines depends on the inducing signals and the type of cell analyzed. J Immunol 152:2720–2728

    CAS  PubMed  Google Scholar 

  43. O’Keefe GM, Nguyen VT, Benveniste EN (1999) Class II transactivator and class II MHC gene expression in microglia: modulation by the cytokines TGF-beta, IL-4, IL-13 and IL-10. Eur J Immunol 29:1275–1285

    PubMed  Google Scholar 

  44. Lai AY, Todd KG (2008) Differential regulation of trophic and proinflammatory microglial effectors is dependent on severity of neuronal injury. Glia 56:259–270

    PubMed  Google Scholar 

  45. Horn KP, Busch SA, Hawthorne AL, van Rooijen N, Silver J (2008) Another barrier to regeneration in the CNS: activated macrophages induce extensive retraction of dystrophic axons through direct physical interactions. J Neurosci 28:9330–9341

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Yoles E, Fraidakis M, Solomon A, Gepstein R, Katz A, Belkin M, Hadani M, Schwartz M (1998) Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 4:814–821

    CAS  PubMed  Google Scholar 

  47. Yang LQ, Jones NR, Blumbergs PC, Van Den Heuvel C, Moore EJ, Manavis J, Sarvestani GT, Ghabriel MN (2005) Severity-dependent expression of pro-inflammatory cytokines in traumatic spinal cord injury in the rat. J Clin Neurosci 12:276–284

    CAS  PubMed  Google Scholar 

  48. Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177:7303–7311

    CAS  PubMed  Google Scholar 

  49. Wang K, Bekar LK, Furber K, Walz W (2004) Vimentin-expressing proximal reactive astrocytes correlate with migration rather than proliferation following focal brain injury. Brain Res 1024:193–202

    CAS  PubMed  Google Scholar 

  50. Andressen C, Stocker E, Klinz FJ, Lenka N, Hescheler J, Fleischmann B, Arnhold S, Addicks K (2001) Nestin-specific green fluorescent protein expression in embryonic stem cell-derived neural precursor cells used for transplantation. Stem Cells 19:419–424

    CAS  PubMed  Google Scholar 

  51. Fukuda S, Kato F, Tozuka Y, Yamaguchi M, Miyamoto Y, Hisatsune T (2003) Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J Neurosci 23:9357–9366

    CAS  PubMed  Google Scholar 

  52. Nakamura T, Xi GH, Hua Y, Hoff JT, Keep RF (2003) Nestin expression after experimental intracerebral hemorrhage. Brain Res 981:108–117

    CAS  PubMed  Google Scholar 

  53. Frisén JJC, Török C, Risling M, Lendahl U (1995) Rapid, widespread, and longlasting induction of nestin contributes to the generation of glial scar tissue after CNS injury. J Cell Biol 131:453–464

    PubMed  Google Scholar 

  54. Barnabe-Heider F, Goritz C, Sabelstrom H, Takebayashi H, Pfrieger FW, Meletis K, Frisen J (2010) Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell 7:470–482

    CAS  PubMed  Google Scholar 

  55. Meletis K, Barnabe-Heider F, Carlen M, Evergren E, Tomilin N, Shupliakov O, Frisen J (2008) Spinal cord injury reveals multilineage differentiation of ependymal cells. Plos Biol 6:1494–1507

    CAS  Google Scholar 

  56. Renault-Mihara F, Katoh H, Ikegami T, Iwanami A, Mukaino M, Yasuda A, Nori S, Mabuchi Y, Tada H, Shibata S, Saito K, Matsushita M, Kaibuchi K, Okada S, Toyama Y, Nakamura M, Okano H (2011) Beneficial compaction of spinal cord lesion by migrating astrocytes through glycogen synthase kinase-3 inhibition. Embo Mol Med 3:682–696

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10:1369–1376

    CAS  PubMed  Google Scholar 

  59. Vermeiren C, Najimi M, Vanhoutte N, Tilleux S, de Hemptinne I, Maloteaux JM, Hermans E (2005) Acute up-regulation of glutamate uptake mediated by mGluR5a in reactive astrocytes. J Neurochem 94:405–416

    CAS  PubMed  Google Scholar 

  60. Stichel CC, Muller HW (1998) The CNS lesion scar: new vistas on an old regeneration barrier. Cell Tissue Res 294:1–9

    CAS  PubMed  Google Scholar 

  61. Busch SA, Silver J (2007) The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 17:120–127

    CAS  PubMed  Google Scholar 

  62. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    CAS  PubMed  Google Scholar 

  63. Jones LL, Margolis RU, Tuszynski MH (2003) The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp Neurol 182:399–411

    CAS  PubMed  Google Scholar 

  64. Mckeon RJ, Schreiber RC, Rudge JS, Silver J (1991) Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci 11:3398–3411

    CAS  PubMed  Google Scholar 

  65. Stichel CC, Hermanns S, Luhmann HJ, Lausberg F, Niermann H, D’Urso D, Servos G, Hartwig HG, Muller HW (1999) Inhibition of collagen IV deposition promotes regeneration of injured CNS axons. Eur J Neurosci 11:632–646

    CAS  PubMed  Google Scholar 

  66. Mckeon RJ, Hoke A, Silver J (1995) Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp Neurol 136:32–43

    CAS  PubMed  Google Scholar 

  67. Siebert JR, Osterhout DJ (2011) The inhibitory effects of chondroitin sulfate proteoglycans on oligodendrocytes. J Neurochem 119:176–188

    CAS  PubMed  Google Scholar 

  68. Siebert JR, Stelzner DJ, Osterhout DJ (2011) Chondroitinase treatment following spinal contusion injury increases migration of oligodendrocyte progenitor cells. Exp Neurol 231:19–29

    CAS  PubMed  Google Scholar 

  69. Gris D, Marsh DR, Oatway MA, Chen Y, Hamilton EF, Dekaban GA, Weaver LC (2004) Transient blockade of the CD11d/CD18 integrin reduces secondary damage after spinal cord injury, improving sensory, autonomic, and motor function. J Neurosci 24:4043–4051

    CAS  PubMed  Google Scholar 

  70. Gonzalez R, Hickey MJ, Espinosa JM, Nistor G, Lane TE, Keirstead HS (2007) Therapeutic neutralization of CXCL10 decreases secondary degeneration and functional deficit after spinal cord injury in mice. Regen Med 2:771–783

    CAS  PubMed  Google Scholar 

  71. Popovich PG, Guan Z, Wei P, Huitinga I, van Rooijen N, Stokes BT (1999) Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp Neurol 158:351–365

    CAS  PubMed  Google Scholar 

  72. Sloane E, Ledeboer A, Seibert W, Coats B, van Strien M, Maier SF, Johnson KW, Chavez R, Watkins LR, Leinwand L, Milligan ED, Van Dam AM (2009) Anti-inflammatory cytokine gene therapy decreases sensory and motor dysfunction in experimental multiple sclerosis: MOG-EAE behavioral and anatomical symptom treatment with cytokine gene therapy. Brain Behav Immun 23:92–100

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Arnold SA, Hagg T (2011) Anti-inflammatory treatments during the chronic phase of spinal cord injury improve locomotor function in adult mice. J Neurotrauma 28:1995–2002

    PubMed  Google Scholar 

  74. Festoff BW, Ameenuddin S, Arnold PM, Wong A, Santacruz KS, Citron BA (2006) Minocycline neuroprotects, reduces microgliosis, and inhibits caspase protease expression early after spinal cord injury. J Neurochem 97:1314–1326

    CAS  PubMed  Google Scholar 

  75. Lee SM, Yune TY, Kim SJ, Park DW, Lee YK, Kim YC, Oh YJ, Markelonis GJ, Oh TH (2003) Minocycline reduces cell death and improves functional recovery after traumatic spinal cord injury in the rat. J Neurotrauma 20:1017–1027

    PubMed  Google Scholar 

  76. Cafferty WB, Yang SH, Duffy PJ, Li S, Strittmatter SM (2007) Functional axonal regeneration through astrocytic scar genetically modified to digest chondroitin sulfate proteoglycans. J Neurosci 27:2176–85

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Gao Q, Li Y, Shen L, Zhang J, Zheng X, Qu R, Liu Z, Chopp M (2008) Bone marrow stromal cells reduce ischemia-induced astrocytic activation in vitro. Neuroscience 152:646–55

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Ito M, Natsume A, Takeuchi H, Shimato S, Ohno M, Wakabayashi T, Yoshida J (2009) Type I interferon inhibits astrocytic gliosis and promotes functional recovery after spinal cord injury by deactivation of the MEK/ERK pathway. J Neurotrauma 26:41–53

    PubMed  Google Scholar 

  79. Jeong SR, Kwon MJ, Lee HG, Joe EH, Lee JH, Kim SS, Suh-Kim H, Kim BG (2012) Hepatocyte growth factor reduces astrocytic scar formation and promotes axonal growth beyond glial scars after spinal cord injury. Exp Neurol 233:312–22

    CAS  PubMed  Google Scholar 

  80. Menet V, Prieto M, Privat A, Giménez y Ribotta M (2003) Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes. Proc Natl Acad Sci U S A 100:8999–9004

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Chen MJ, Kress B, Han X, Moll K, Peng W, Ji RR, Nedergaard M (2012) Astrocytic CX43 hemichannels and gap junctions play a crucial role in development of chronic neuropathic pain following spinal cord injury. Glia 60:1660–70

    PubMed Central  PubMed  Google Scholar 

  82. Gwak YS, Kang J, Unabia GC, Hulsebosch CE (2012) Spatial and temporal activation of spinal glial cells: role of gliopathy in central neuropathic pain following spinal cord injury in rats. Exp Neurol 234:362–72

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Hains BC, Waxman SG (2006) Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J Neurosci 26:4308–17

    CAS  PubMed  Google Scholar 

  84. Milligan ED, Watkins LR (2009) Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 10:23–36

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Olechowski CJ, Truong JJ, Kerr BJ (2009) Neuropathic pain behaviours in a chronic-relapsing model of experimental autoimmune encephalomyelitis (EAE). Pain 141:156–64

    CAS  PubMed  Google Scholar 

  86. Cheng Y, Hitchcock SA (2007) Targeting cannabinoid agonists for inflammatory and neuropathic pain. Expert Opin Investig Drugs 16:951–65

    CAS  PubMed  Google Scholar 

  87. Tsuda M, Tozaki-Saitoh H, Inoue K (2012) Purinergic system, microglia and neuropathic pain. Curr Opin Pharmacol 12:74–9

    CAS  PubMed  Google Scholar 

  88. Nguyen VT, Benveniste EN (2002) Critical role of tumor necrosis factor-alpha and NF-kappa B in interferon-gamma-induced CD40 expression in microglia/macrophages. J Biol Chem 277:13796–13803

    CAS  PubMed  Google Scholar 

  89. Rohl C, Lucius R, Sievers J (2007) The effect of activated microglia on astrogliosis parameters in astrocyte cultures. Brain Res 1129:43–52

    PubMed  Google Scholar 

  90. Lacy M, Jones J, Whittemore SR, Haviland DL, Wetsel RA, Barnum SR (1995) Expression of the receptors for the C5a anaphylatoxin, interleukin-8 and FMLP by human astrocytes and microglia. J Neuroimmunol 61:71–78

    CAS  PubMed  Google Scholar 

  91. Nakamura M, Okada S, Toyama Y, Okano H (2005) Role of IL-6 in spinal cord injury in a mouse model. Clin Rev Allerg Immu 28:197–203

    CAS  Google Scholar 

  92. Norris JG, Tang LP, Sparacio SM, Benveniste EN (1994) Signal transduction pathways mediating astrocyte IL-6 induction by IL-1-beta and tumor necrosis factor-alpha. J Immunol 152:841–850

    CAS  PubMed  Google Scholar 

  93. Sawada M, Itoh Y, Suzumura A, Marunouchi T (1993) Expression of cytokine receptors in cultured neuronal and glial-cells. Neurosci Lett 160:131–134

    CAS  PubMed  Google Scholar 

  94. Balasingam V, Tejadaberges T, Wright E, Bouckova R, Yong VW (1994) Reactive astrogliosis in the neonatal mouse-brain and its modulation by cytokines. J Neurosci 14:846–856

    CAS  PubMed  Google Scholar 

  95. Giulian D, Young D, Woodward J, Brown D, Lachman L (1988) Interleukin-1 is an astroglial growth factor in the developing brain. J Neurosci 8:709–714

    CAS  PubMed  Google Scholar 

  96. Frei K, Malipiero UV, Leist TP, Zinkernagel RM, Schwab ME, Fontana A (1989) On the cellular source and function of interleukin 6 produced in the central nervous system in viral diseases. Eur J Immunol 19:689–694

    CAS  PubMed  Google Scholar 

  97. Aderka D, Le JM, Vilcek J (1989) IL-6 inhibits lipopolysaccharide-induced tumor necrosis factor production in cultured human monocytes, U937 cells, and in mice. J Immunol 143:3517–3523

    CAS  PubMed  Google Scholar 

  98. Brunello AG, Weissenberger J, Kappeler A, Vallan C, Peters M, Rose-John S, Weis J (2000) Astrocytic alterations in interleukin-6/soluble interleukin-6 receptor alpha double-transgenic mice. Am J Pathol 157:1485–1493

    CAS  PubMed  Google Scholar 

  99. Klein MA, Moller JC, Jones LL, Bluethmann H, Kreutzberg GW, Raivich G (1997) Impaired neuroglial activation in interleukin-6 deficient mice. Glia 19:227–233

    CAS  PubMed  Google Scholar 

  100. Junier MP (2000) What role(s) for TGFalpha in the central nervous system? Prog Neurobiol 62:443–47

    CAS  PubMed  Google Scholar 

  101. Sharif A, Prevot V, Renault-Mihara F, Allet C, Studler JM, Canton B, Chneiweiss H, Junier MP (2006) Transforming growth factor alpha acts as a gliatrophin for mouse and human astrocytes. Oncogene 25:4076–4085

    CAS  PubMed  Google Scholar 

  102. Rabchevsky AG, Weinitz JM, Coulpier M, Fages C, Tinel M, Junier MP (1998) A role for transforming growth factor alpha as an inducer of astrogliosis. J Neurosci 18:10541–10552

    CAS  PubMed  Google Scholar 

  103. Beck KD, Nguyen HX, Galvan MD, Salazar DL, Woodruff TM, Anderson AJ (2010) Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment. Brain 133:433–447

    PubMed  Google Scholar 

  104. Rhodes KE, Moon LD, Fawcett JW (2003) Inhibiting cell proliferation during formation of the glial scar: effects on axon regeneration in the CNS. Neuroscience 120:41–56

    CAS  PubMed  Google Scholar 

  105. Faulkner JR, Herrmann JE, Woo MJ, Doan NB, Sofroniew MV (2003) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurotraum 20:1056–1056

    Google Scholar 

  106. Benveniste EN (1998) Cytokine actions in the central nervous system. Cytokine Growth F R 9:259–275

    CAS  Google Scholar 

  107. Sievers JPR, Wottge HU (1994) Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes: morphology. Glia 12:245–258

    CAS  PubMed  Google Scholar 

  108. Schilling TNR, Heinemann U, Haas D, Eder C (2001) Astrocyte-released cytokines induce ramification and outward K + channel expression in microglia via distinct signalling pathways. Eur J Neurosci 14:463–473

    CAS  PubMed  Google Scholar 

  109. Escartin C, Bonvento G (2008) Targeted activation of astrocytes: a potential neuroprotective strategy. Mol Neurobiol 38:231–241

    CAS  PubMed  Google Scholar 

  110. Wu VW, Nishiyama N, Schwartz JP (1998) A culture model of reactive astrocytes: increased nerve growth factor synthesis and reexpression of cytokine responsiveness. J Neurochem 71:749–756

    CAS  PubMed  Google Scholar 

  111. Honda S, Sasaki Y, Ohsawa K, Imai Y, Nakamura Y, Inoue K, Kohsaka S (2001) Extracellular ATP or ADP induce chemotaxis of cultured microglia through G(i/o)-coupled P2Y receptors. J Neurosci 21:1975–1982

    CAS  PubMed  Google Scholar 

  112. Suzuki T, Hide I, Ido K, Kohsaka S, Inoue K, Nakata Y (2004) Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. J Neurosci 24:1–7

    CAS  PubMed  Google Scholar 

  113. Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9:1512–1519

    CAS  PubMed  Google Scholar 

  114. Verderio C, Matteoli M (2001) ATP mediates calcium signaling between astrocytes and microglial cells: modulation by IFN-gamma. J Immunol 166:6383–6391

    CAS  PubMed  Google Scholar 

  115. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    CAS  PubMed  Google Scholar 

  116. McMullan SM, Phanavanh B, Li GG, Barger SW (2012) Metabotropic glutamate receptors inhibit microglial glutamate release. Asn Neuro 4:323–330

    CAS  Google Scholar 

  117. Espey MG, Basile AS (1999) Glutamate augments retrovirus-induced immunodeficiency through chronic stimulation of the hypothalamic–pituitary–adrenal axis. J Immunol 162:4998–5002

    CAS  PubMed  Google Scholar 

  118. Groom AJ, Smith T, Turski L (2003) Multiple sclerosis and glutamate. Ann N Y Acad Sci 993:229–275

    CAS  PubMed  Google Scholar 

  119. Willard LB, Hauss-Wegrzyniak B, Danysz W, Wenk GL (2000) The cytotoxicity of chronic neuroinflammation upon basal forebrain cholinergic neurons of rats can be attenuated by glutamatergic antagonism or cyclooxygenase-2 inhibition. Exp Brain Res 134:58–65

    CAS  PubMed  Google Scholar 

  120. Lijia Z, Zhao S, Wang X, Wu C, Yang J (2012) A self-propelling cycle mediated by reactive oxide species and nitric oxide exists in LPS-activated microglia. Neurochem Int 61:1220–1230

    CAS  PubMed  Google Scholar 

  121. Asher RA, Morgenstern DA, Fidler PS, Adcock KH, Oohira A, Braistead JE, Levine JM, Margolis RU, Rogers JH, Fawcett JW (2000) Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J Neurosci 20:2427–2438

    CAS  PubMed  Google Scholar 

  122. Gutowski NJ, Newcombe J, Cuzner ML (1999) Tenascin-R and C in multiple sclerosis lesions: relevance to extracellular matrix remodelling. Neuropath Appl Neuro 25:207–214

    CAS  Google Scholar 

  123. Hayashi K, Kadomatsu K, Muramatsu T (2001) Requirement of chondroitin sulfate/dermatan sulfate recognition in midkine-dependent migration of macrophages. Glycoconj J 18:401–406

    CAS  PubMed  Google Scholar 

  124. Rolls A, Cahalon L, Bakalash S, Avidan H, Lider O, Schwartz M (2006) A sulfated disaccharide derived from chondroitin sulfate proteoglycan protects against inflammation-associated neurodegeneration. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 20:547–549

    CAS  Google Scholar 

  125. Kodaira Y, Nair SK, Wrenshall LE, Gilboa E, Platt JL (2000) Phenotypic and functional maturation of dendritic cells mediated by heparan sulfate. J Immunol 165:1599–1604

    CAS  PubMed  Google Scholar 

  126. Bourguignon LY, Gilad E, Rothman K, Peyrollier K (2005) Hyaluronan–CD44 interaction with IQGAP1 promotes Cdc42 and ERK signaling, leading to actin binding, Elk-1/estrogen receptor transcriptional activation, and ovarian cancer progression. J Biol Chem 280:11961–11972

    CAS  PubMed  Google Scholar 

  127. Rolls A, Shechter R, London A, Segev Y, Jacob-Hirsch J, Amariglio N, Rechavi G, Schwartz M (2008) Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation. PLoS medicine 5:e171

    PubMed Central  PubMed  Google Scholar 

  128. Ramirez G, Toro R, Dobeli H, von Bernhardi R (2005) Protection of rat primary hippocampal cultures from A beta cytotoxicity by pro-inflammatory molecules is mediated by astrocytes. Neurobiol Dis 19:243–254

    CAS  PubMed  Google Scholar 

  129. Herrera-Molina R, von Bernhardi R (2005) Transforming growth factor-beta 1 produced by hippocampal cells modulates microglial reactivity in culture. Neurobiol Dis 19:229–236

    CAS  PubMed  Google Scholar 

  130. Addis RC, Hsu FC, Wright RL, Dichter MA, Coulter DA, Gearhart JD (2011) Efficient conversion of astrocytes to functional midbrain dopaminergic neurons using a single polycistronic vector. PLoS One 6(12):e28719

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Caiazzo M, Dell’Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova TD, Menegon A, Roncaglia P, Colciago G, Russo G, Carninci P, Pezzoli G, Gainetdinov RR, Gustincich S, Dityatev A, Broccoli V (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476:224–227

    CAS  PubMed  Google Scholar 

  132. Heinrich CGM, Berninger B (2012) Reprogramming of postnatal astroglia of the mouse neocortex into functional, synapse-forming neurons. Methods Mol Biol 814:485–498

    CAS  PubMed  Google Scholar 

  133. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V, Marro S, Sudhof TC, Wernig M (2011) Induction of human neuronal cells by defined transcription factors. Nature 476:220–223

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Qiang L, Fujita R, Yamashita T, Angulo S, Rhinn H, Rhee D, Doege C, Chau L, Aubry L, Vanti William B, Moreno H, Abeliovich A (2011) Directed conversion of Alzheimer’s disease patient skin fibroblasts into functional neurons. Cell 146:359–371

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Xue Y, Ouyang K, Huang J, Zhou Y, Ouyang H, Li H, Wang G, Wu Q, Wei C, Bi Y, Jiang L, Cai Z, Sun H, Zhang K, Zhang Y, Chen J, Fu XD (2013) Direct conversion of fibroblasts to neurons by reprogramming PTB-Regulated MicroRNA circuits. Cell 152:82–96

    CAS  PubMed  Google Scholar 

  137. Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien RW, Crabtree GR (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476:228–231

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by an Institutional Development Award (IDeA) from the NIGMS P20GM103453.

Conflict of Interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingsan Zhu or Jun Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Z., Zhu, Q., Zhang, Y. et al. Reciprocal Modulation Between Microglia and Astrocyte in Reactive Gliosis Following the CNS Injury. Mol Neurobiol 48, 690–701 (2013). https://doi.org/10.1007/s12035-013-8460-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8460-4

Keywords

Navigation