Skip to main content

Advertisement

Log in

Interferon-beta therapy in multiple sclerosis: the short-term and long-term effects on the patients’ individual gene expression in peripheral blood

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Therapy with interferon-beta (IFN-beta) is a mainstay in the management of relapsing–remitting multiple sclerosis (MS), with proven long-term effectiveness and safety. Much has been learned about the molecular mechanisms of action of IFN-beta in the past years. Previous studies described more than a hundred genes to be modulated in expression in blood cells in response to the therapy. However, for many of these genes, the precise temporal expression pattern and the therapeutic relevance are unclear. We used Affymetrix microarrays to investigate in more detail the gene expression changes in peripheral blood mononuclear cells from MS patients receiving subcutaneous IFN-beta-1a. The blood samples were obtained longitudinally at five different time points up to 2 years after the start of therapy, and the patients were clinically followed up for 5 years. We examined the functions of the genes that were upregulated or downregulated at the transcript level after short-term or long-term treatment. Moreover, we analyzed their mutual interactions and their regulation by transcription factors. Compared to pretreatment levels, 96 genes were identified as highly differentially expressed, many of them already after the first IFN-beta injection. The interactions between these genes form a large network with multiple feedback loops, indicating the complex crosstalk between innate and adaptive immune responses during therapy. We discuss the genes and biological processes that might be important to reduce disease activity by attenuating the proliferation of autoreactive immune cells and their migration into the central nervous system. In summary, we present novel insights that extend the current knowledge on the early and late pharmacodynamic effects of IFN-beta therapy and describe gene expression differences between the individual patients that reflect clinical heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APC:

Antigen-presenting cell

BBB:

Blood–brain barrier

CDF:

Chip definition file

CNS:

Central nervous system

DBD:

DNA-binding domain

ECM:

Extracellular matrix

EDSS:

Expanded Disability Status Scale

GAS:

Interferon-gamma-activated sequence

GEO:

Gene Expression Omnibus

GO:

Gene Ontology

IAP:

Inhibitor of apoptosis

IFN:

Interferon

IRF:

Interferon regulatory factor

ISRE:

Interferon-stimulated response element

MAID:

MA plot-based signal intensity-dependent fold-change criterion

MHC:

Major histocompatibility complex

MRI:

Magnetic resonance imaging

MS:

Multiple sclerosis

NAb:

Neutralizing antibodies

NK cells:

Natural killer cells

Pat:

Patient

PBMC:

Peripheral blood mononuclear cells

PPI:

Protein–protein interaction

PWM:

Position weight matrix

RLR:

RIG-I-like receptor

RRMS:

Relapsing–remitting multiple sclerosis

s.c.:

Subcutaneous

SMARC:

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin

TF:

Transcription factor

TFBS:

Transcription factor binding site

TLR:

Toll-like receptor

TSS:

Transcription start site

References

  1. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372(9648):1502–1517

    CAS  PubMed  Google Scholar 

  2. McFarland HF, Martin R (2007) Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol 8(9):913–919

    CAS  PubMed  Google Scholar 

  3. Zettl UK, Stüve O, Patejdl R (2012) Immune-mediated CNS diseases: a review on nosological classification and clinical features. Autoimmun Rev 11(3):167–173. doi:10.1016/j.autrev.2011.05.008

    PubMed  Google Scholar 

  4. Kakalacheva K, Münz C, Lünemann JD (2011) Viral triggers of multiple sclerosis. Biochim Biophys Acta 1812(2):132–140

    CAS  PubMed  Google Scholar 

  5. Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747

    CAS  PubMed  Google Scholar 

  6. Vosoughi R, Freedman MS (2010) Therapy of MS. Clin Neurol Neurosurg 112(5):365–385

    PubMed  Google Scholar 

  7. Mendes A, Sá MJ (2011) Classical immunomodulatory therapy in multiple sclerosis: how it acts, how it works. Arq Neuropsiquiatr 69(3):536–543

    PubMed  Google Scholar 

  8. Multiple Sclerosis Therapy Consensus Group (MSTCG), Wiendl H, Toyka KV, Rieckmann P, Gold R, Hartung HP, Hohlfeld R (2008) Basic and escalating immunomodulatory treatments in multiple sclerosis: current therapeutic recommendations. J Neurol 255(10):1449–1463

    CAS  PubMed  Google Scholar 

  9. Kieseier BC, Calabresi PA (2012) PEGylation of interferon-beta-1a: a promising strategy in multiple sclerosis. CNS Drugs 26(3):205–214. doi:10.2165/11596970-000000000-00000

    CAS  PubMed  Google Scholar 

  10. De Stefano N, Sormani MP, Stubinski B, Blevins G, Drulovic JS, Issard D, Shotekov P, Gasperini C (2012) Efficacy and safety of subcutaneous interferon beta-1a in relapsing–remitting multiple sclerosis: further outcomes from the IMPROVE study. J Neurol Sci 312(1–2):97–101

    PubMed  Google Scholar 

  11. Soilu-Hänninen M, Aivo J, Lindström BM, Elovaara I, Sumelahti ML, Färkkilä M, Tienari P, Atula S, Sarasoja T, Herrala L, Keskinarkaus I, Kruger J, Kallio T, Rocca MA, Filippi M (2012) A randomised, double blind, placebo controlled trial with vitamin D3 as an add on treatment to interferon beta-1b in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 83(5):565–571

    PubMed  Google Scholar 

  12. Borden EC, Sen GC, Uze G, Silverman RH, Ransohoff RM, Foster GR, Stark GR (2007) Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov 6(12):975–990

    CAS  PubMed  Google Scholar 

  13. Kadowaki N, Antonenko S, Lau JY, Liu YJ (2000) Natural interferon alpha/beta-producing cells link innate and adaptive immunity. J Exp Med 192(2):219–226

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM (2011) A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472(7344):481–485

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Hundeshagen A, Hecker M, Paap BK, Angerstein C, Kandulski O, Fatum C, Hartmann C, Koczan D, Thiesen HJ, Zettl UK (2012) Elevated type I interferon-like activity in a subset of multiple sclerosis patients: molecular basis and clinical relevance. J Neuroinflammation 9:140

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Dhib-Jalbut S, Marks S (2010) Interferon-beta mechanisms of action in multiple sclerosis. Neurology 74(Suppl 1):S17–S24

    CAS  PubMed  Google Scholar 

  17. Killestein J, Polman CH (2011) Determinants of interferon beta efficacy in patients with multiple sclerosis. Nat Rev Neurol 7(4):221–228

    CAS  PubMed  Google Scholar 

  18. Sørensen PS, Deisenhammer F, Duda P, Hohlfeld R, Myhr KM, Palace J, Polman C, Pozzilli C, Ross C, EFNS Task Force on Anti-IFN-beta Antibodies in Multiple Sclerosis (2005) Guidelines on use of anti-IFN-beta antibody measurements in multiple sclerosis: report of an EFNS Task Force on IFN-beta antibodies in multiple sclerosis. Eur J Neurol 12(11):817–827

    PubMed  Google Scholar 

  19. Capra R, Sottini A, Cordioli C, Serana F, Chiarini M, Caimi L, Padovani A, Bergamaschi R, Imberti L (2007) IFNbeta bioavailability in multiple sclerosis patients: MxA versus antibody-detecting assays. J Neuroimmunol 189(1–2):102–110

    CAS  PubMed  Google Scholar 

  20. Graber JJ, Dhib-Jalbut S (2011) Biomarkers of disease activity in multiple sclerosis. J Neurol Sci 305(1–2):1–10

    CAS  PubMed  Google Scholar 

  21. Hecker M, Paap BK, Goertsches RH, Kandulski O, Fatum C, Koczan D, Hartung HP, Thiesen HJ, Zettl UK (2011) Reassessment of blood gene expression markers for the prognosis of relapsing–remitting multiple sclerosis. PLoS One 6(12):e29648

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Kemppinen AK, Kaprio J, Palotie A, Saarela J (2011) Systematic review of genome-wide expression studies in multiple sclerosis. BMJ Open 1(1):e000053

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Goertsches RH, Zettl UK, Hecker M (2011) Sieving treatment biomarkers from blood gene-expression profiles: a pharmacogenomic update on two types of multiple sclerosis therapy. Pharmacogenomics 12(3):423–432

    CAS  PubMed  Google Scholar 

  24. Croze E (2010) Differential gene expression and translational approaches to identify biomarkers of interferon beta activity in multiple sclerosis. J Interferon Cytokine Res 30(10):743–749

    CAS  PubMed  Google Scholar 

  25. Goertsches RH, Hecker M, Zettl UK (2008) Monitoring of multiple sclerosis immunotherapy: from single candidates to biomarker networks. J Neurol 255(Suppl 6):48–57

    CAS  PubMed  Google Scholar 

  26. Paap BK, Hundeshagen A, Hecker M, Zettl UK (2012) An inventory of short term and long term changes in gene expression under interferon beta treatment of relapsing remitting MS patients. Curr Pharm Des 18(29):4475–4484

    CAS  PubMed  Google Scholar 

  27. Gilli F, Marnetto F, Caldano M, Sala A, Malucchi S, Di Sapio A, Capobianco M, Bertolotto A (2005) Biological responsiveness to first injections of interferon-beta in patients with multiple sclerosis. J Neuroimmunol 158(1–2):195–203

    CAS  PubMed  Google Scholar 

  28. Santos R, Weinstock-Guttman B, Tamaño-Blanco M, Badgett D, Zivadinov R, Justinger T, Munschauer F 3rd, Ramanathan M (2006) Dynamics of interferon-beta modulated mRNA biomarkers in multiple sclerosis patients with anti-interferon-beta neutralizing antibodies. J Neuroimmunol 176(1–2):125–133

    CAS  PubMed  Google Scholar 

  29. Hartung HP (2009) High-dose, high-frequency recombinant interferon beta-1a in the treatment of multiple sclerosis. Expert Opin Pharmacother 10(2):291–309. doi:10.1517/14656560802677882

    CAS  PubMed  Google Scholar 

  30. Annibali V, Di Giovanni S, Cannoni S, Giugni E, Bomprezzi R, Mattei C, Elkahloun A, Coccia EM, Alfò M, Orzi F, Ristori G, Salvetti M (2007) Gene expression profiles reveal homeostatic dynamics during interferon-beta therapy in multiple sclerosis. Autoimmunity 40(1):16–22

    CAS  PubMed  Google Scholar 

  31. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, McFarland HF, Paty DW, Polman CH, Reingold SC, Sandberg-Wollheim M, Sibley W, Thompson A, van den Noort S, Weinshenker BY, Wolinsky JS (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50(1):121–127

    CAS  PubMed  Google Scholar 

  32. Ferrari F, Bortoluzzi S, Coppe A, Sirota A, Safran M, Shmoish M, Ferrari S, Lancet D, Danieli GA, Bicciato S (2007) Novel definition files for human GeneChips based on GeneAnnot. BMC Bioinforma 8:446

    Google Scholar 

  33. Hecker M, Goertsches RH, Engelmann R, Thiesen HJ, Guthke R (2009) Integrative modeling of transcriptional regulation in response to antirheumatic therapy. BMC Bioinforma 10:262

    Google Scholar 

  34. Yang IV, Chen E, Hasseman JP, Liang W, Frank BC, Wang S, Sharov V, Saeed AI, White J, Li J, Lee NH, Yeatman TJ, Quackenbush J (2002) Within the fold: assessing differential expression measures and reproducibility in microarray assays. Genome Biol 3(11):research0062

    PubMed Central  PubMed  Google Scholar 

  35. Goertsches RH, Hecker M, Koczan D, Serrano-Fernandez P, Moeller S, Thiesen HJ, Zettl UK (2010) Long-term genome-wide blood RNA expression profiles yield novel molecular response candidates for IFN-beta-1b treatment in relapsing remitting MS. Pharmacogenomics 11(2):147–161

    CAS  PubMed  Google Scholar 

  36. Serrano-Fernández P, Möller S, Goertsches R, Fiedler H, Koczan D, Thiesen HJ, Zettl UK (2010) Time course transcriptomics of IFNB1b drug therapy in multiple sclerosis. Autoimmunity 43(2):172–178

    PubMed  Google Scholar 

  37. Falcon S, Gentleman R (2007) Using GOstats to test gene lists for GO term association. Bioinformatics 23(2):257–258

    CAS  PubMed  Google Scholar 

  38. Watkins NA, Gusnanto A, de Bono B, De S, Miranda-Saavedra D, Hardie DL, Angenent WG, Attwood AP, Ellis PD, Erber W, Foad NS, Garner SF, Isacke CM, Jolley J, Koch K, Macaulay IC, Morley SL, Rendon A, Rice KM, Taylor N, Thijssen-Timmer DC, Tijssen MR, van der Schoot CE, Wernisch L, Winzer T, Dudbridge F, Buckley CD, Langford CF, Teichmann S, Göttgens B, Ouwehand WH, Consortium Bloodomics (2009) A HaemAtlas: characterizing gene expression in differentiated human blood cells. Blood 113(19):e1–e9. doi:10.1182/blood-2008-06-162958

    CAS  PubMed  Google Scholar 

  39. Dreszer TR, Karolchik D, Zweig AS, Hinrichs AS, Raney BJ, Kuhn RM, Meyer LR, Wong M, Sloan CA, Rosenbloom KR, Roe G, Rhead B, Pohl A, Malladi VS, Li CH, Learned K, Kirkup V, Hsu F, Harte RA, Guruvadoo L, Goldman M, Giardine BM, Fujita PA, Diekhans M, Cline MS, Clawson H, Barber GP, Haussler D, James Kent W (2012) The UCSC Genome Browser database: extensions and updates 2011. Nucleic Acids Res 40(Database issue):D918–D923

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Robertson G, Bilenky M, Lin K, He A, Yuen W, Dagpinar M, Varhol R, Teague K, Griffith OL, Zhang X, Pan Y, Hassel M, Sleumer MC, Pan W, Pleasance ED, Chuang M, Hao H, Li YY, Robertson N, Fjell C, Li B, Montgomery SB, Astakhova T, Zhou J, Sander J, Siddiqui AS, Jones SJ (2006) cisRED: a database system for genome-scale computational discovery of regulatory elements. Nucleic Acids Res 34(Database issue):D68–D73

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Pachkov M, Erb I, Molina N, van Nimwegen E (2007) SwissRegulon: a database of genome-wide annotations of regulatory sites. Nucleic Acids Res 35(Database issue):D127–D131

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Wingender E (2008) The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation. Brief Bioinform 9(4):326–332

    CAS  PubMed  Google Scholar 

  43. Mahony S, Benos PV (2007) STAMP: a web tool for exploring DNA-binding motif similarities. Nucleic Acids Res 35(Web Server issue):W253–W258

    PubMed Central  PubMed  Google Scholar 

  44. FANTOM Consortium, Suzuki H, Forrest AR, van Nimwegen E, Daub CO, Balwierz PJ, Irvine KM, Lassmann T, Ravasi T, Hasegawa Y, de Hoon MJ, Katayama S, Schroder K, Carninci P, Tomaru Y, Kanamori-Katayama M, Kubosaki A, Akalin A, Ando Y, Arner E, Asada M, Asahara H, Bailey T, Bajic VB, Bauer D, Beckhouse AG, Bertin N, Björkegren J, Brombacher F, Bulger E, Chalk AM et al (2009) The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet 41(5):553–562

    CAS  PubMed  Google Scholar 

  45. Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, Nativ N, Bahir I, Doniger T, Krug H, Sirota-Madi A, Olender T, Golan Y, Stelzer G, Harel A, Lancet D (2010) GeneCards Version 3: the human gene integrator. Database (Oxford) 2010:baq020

  46. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3):431–432

    CAS  PubMed  Google Scholar 

  47. Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinforma 4:2

    Google Scholar 

  48. Morris JH, Apeltsin L, Newman AM, Baumbach J, Wittkop T, Su G, Bader GD, Ferrin TE (2011) clusterMaker: a multi-algorithm clustering plugin for Cytoscape. BMC Bioinforma 12:436

    CAS  Google Scholar 

  49. Ramana CV, Chatterjee-Kishore M, Nguyen H, Stark GR (2000) Complex roles of Stat1 in regulating gene expression. Oncogene 19(21):2619–2627

    CAS  PubMed  Google Scholar 

  50. Barkhof F (2002) The clinico-radiological paradox in multiple sclerosis revisited. Curr Opin Neurol 15(3):239–245

    PubMed  Google Scholar 

  51. Leray E, Yaouanq J, Le Page E, Coustans M, Laplaud D, Oger J, Edan G (2010) Evidence for a two-stage disability progression in multiple sclerosis. Brain 133(Pt 7):1900–1913

    PubMed  Google Scholar 

  52. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  53. Hecker M, Goertsches RH, Fatum C, Koczan D, Thiesen HJ, Guthke R, Zettl UK (2012) Network analysis of transcriptional regulation in response to intramuscular interferon-beta-1a multiple sclerosis treatment. Pharmacogenomics J 12(2):134–146. doi:10.1038/tpj.2010.77

    CAS  PubMed  Google Scholar 

  54. Gilli F, Valentino P, Caldano M, Granieri L, Capobianco M, Malucchi S, Sala A, Marnetto F, Bertolotto A (2008) Expression and regulation of IFNalpha/beta receptor in IFNbeta-treated patients with multiple sclerosis. Neurology 71(24):1940–1947

    CAS  PubMed  Google Scholar 

  55. Farrell RA, Marta M, Gaeguta AJ, Souslova V, Giovannoni G, Creeke PI (2012) Development of resistance to biologic therapies with reference to IFN-beta. Rheumatology (Oxford) 51(4):590–599

    CAS  Google Scholar 

  56. Giovannoni G, Munschauer FE 3rd, Deisenhammer F (2002) Neutralising antibodies to interferon beta during the treatment of multiple sclerosis. J Neurol Neurosurg Psychiatry 73(5):465–469

    CAS  PubMed  Google Scholar 

  57. Sominanda A, Lundkvist M, Fogdell-Hahn A, Hemmer B, Hartung HP, Hillert J, Menge T, Kieseier BC (2010) Inhibition of endogenous interferon beta by neutralizing antibodies against recombinant interferon beta. Arch Neurol 67(9):1095–1101

    PubMed  Google Scholar 

  58. Ohya K, Kajigaya S, Kitanaka A, Yoshida K, Miyazato A, Yamashita Y, Yamanaka T, Ikeda U, Shimada K, Ozawa K, Mano H (1999) Molecular cloning of a docking protein, BRDG1, that acts downstream of the Tec tyrosine kinase. Proc Natl Acad Sci U S A 96(21):11976–11981

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Pekarsky Y, Palamarchuk A, Maximov V, Efanov A, Nazaryan N, Santanam U, Rassenti L, Kipps T, Croce CM (2008) Tcl1 functions as a transcriptional regulator and is directly involved in the pathogenesis of CLL. Proc Natl Acad Sci U S A 105(50):19643–19648

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Laine J, Künstle G, Obata T, Sha M, Noguchi M (2000) The protooncogene TCL1 is an Akt kinase coactivator. Mol Cell 6(2):395–407

    CAS  PubMed  Google Scholar 

  61. Su L, David M (1999) Inhibition of B cell receptor-mediated apoptosis by IFN. J Immunol 162(11):6317–6321

    CAS  PubMed  Google Scholar 

  62. Badr G, Saad H, Waly H, Hassan K, Abdel-Tawab H, Alhazza IM, Ahmed EA (2010) Type I interferon (IFN-alpha/beta) rescues B-lymphocytes from apoptosis via PI3Kdelta/Akt, Rho-A, NFkappaB and Bcl-2/Bcl(XL). Cell Immunol 263(1):31–40

    CAS  PubMed  Google Scholar 

  63. Mix E, Stefan K, Höppner J, Klauer T, Zettl UK, Strauss U, Meyer-Rienecker HJ, Rolfs A (2003) Lymphocyte subpopulations, oxidative burst and apoptosis in peripheral blood cells of patients with multiple sclerosis-effect of interferon-beta. Autoimmunity 36(5):291–305

    CAS  PubMed  Google Scholar 

  64. Zanotti C, Chiarini M, Serana F, Capra R, Rottoli M, Rovaris M, Cavaletti G, Clerici R, Rezzonico M, Caimi L, Imberti L (2011) Opposite effects of interferon-beta on new B and T cell release from production sites in multiple sclerosis patients. J Neuroimmunol 240–241:147–150

    PubMed  Google Scholar 

  65. Saraste M, Irjala H, Airas L (2007) Expansion of CD56Bright natural killer cells in the peripheral blood of multiple sclerosis patients treated with interferon-beta. Neurol Sci 28(3):121–126

    CAS  PubMed  Google Scholar 

  66. Martínez-Rodríguez JE, López-Botet M, Munteis E, Rio J, Roquer J, Montalban X, Comabella M (2011) Natural killer cell phenotype and clinical response to interferon-beta therapy in multiple sclerosis. Clin Immunol 141(3):348–356

    PubMed  Google Scholar 

  67. Shi FD, Van Kaer L (2006) Reciprocal regulation between natural killer cells and autoreactive T cells. Nat Rev Immunol 6(10):751–760

    CAS  PubMed  Google Scholar 

  68. Jiang W, Chai NR, Maric D, Bielekova B (2011) Unexpected role for granzyme K in CD56bright NK cell-mediated immunoregulation of multiple sclerosis. J Immunol 187(2):781–790

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Packard BZ, Telford WG, Komoriya A, Henkart PA (2007) Granzyme B activity in target cells detects attack by cytotoxic lymphocytes. J Immunol 179(6):3812–3820

    CAS  PubMed  Google Scholar 

  70. Braud VM, Allan DS, O'Callaghan CA, Söderström K, D'Andrea A, Ogg GS, Lazetic S, Young NT, Bell JI, Phillips JH, Lanier LL, McMichael AJ (1998) HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391(6669):795–799

    CAS  PubMed  Google Scholar 

  71. Yu J, Mao HC, Wei M, Hughes T, Zhang J, Park IK, Liu S, McClory S, Marcucci G, Trotta R, Caligiuri MA (2010) CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK-cell subsets. Blood 115(2):274–281

    CAS  PubMed  Google Scholar 

  72. Kärre K (2002) NK cells, MHC class I molecules and the missing self. Scand J Immunol 55(3):221–228

    PubMed  Google Scholar 

  73. Oliveira CC, van Veelen PA, Querido B, de Ru A, Sluijter M, Laban S, Drijfhout JW, van der Burg SH, Offringa R, van Hall T (2010) The nonpolymorphic MHC Qa-1b mediates CD8+ T cell surveillance of antigen-processing defects. J Exp Med 207(1):207–221

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Comabella M, Lünemann JD, Río J, Sánchez A, López C, Julià E, Fernández M, Nonell L, Camiña-Tato M, Deisenhammer F, Caballero E, Tortola MT, Prinz M, Montalban X, Martin R (2009) A type I interferon signature in monocytes is associated with poor response to interferon-beta in multiple sclerosis. Brain 132(Pt 12):3353–3365

    CAS  PubMed  Google Scholar 

  75. van Boxel-Dezaire AH, Zula JA, Xu Y, Ransohoff RM, Jacobberger JW, Stark GR (2010) Major differences in the responses of primary human leukocyte subsets to IFN-beta. J Immunol 185(10):5888–5899

    PubMed Central  PubMed  Google Scholar 

  76. Cepok S, Schreiber H, Hoffmann S, Zhou D, Neuhaus O, von Geldern G, Hochgesand S, Nessler S, Rothhammer V, Lang M, Hartung HP, Hemmer B (2009) Enhancement of chemokine expression by interferon beta therapy in patients with multiple sclerosis. Arch Neurol 66(10):1216–1223

    PubMed  Google Scholar 

  77. O'Boyle G, Brain JG, Kirby JA, Ali S (2007) Chemokine-mediated inflammation: identification of a possible regulatory role for CCR2. Mol Immunol 44(8):1944–1953

    PubMed  Google Scholar 

  78. Müller M, Carter S, Hofer MJ, Campbell IL (2010) Review: the chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity—a tale of conflict and conundrum. Neuropathol Appl Neurobiol 36(5):368–387

    PubMed  Google Scholar 

  79. Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29(6):313–326

    CAS  PubMed  Google Scholar 

  80. Szczuciński A, Losy J (2007) Chemokines and chemokine receptors in multiple sclerosis. Potential targets for new therapies. Acta Neurol Scand 115(3):137–146

    PubMed  Google Scholar 

  81. Mahad D, Callahan MK, Williams KA, Ubogu EE, Kivisäkk P, Tucky B, Kidd G, Kingsbury GA, Chang A, Fox RJ, Mack M, Sniderman MB, Ravid R, Staugaitis SM, Stins MF, Ransohoff RM (2006) Modulating CCR2 and CCL2 at the blood–brain barrier: relevance for multiple sclerosis pathogenesis. Brain 129(Pt 1):212–223

    PubMed  Google Scholar 

  82. Buttmann M, Merzyn C, Rieckmann P (2004) Interferon-beta induces transient systemic IP-10/CXCL10 chemokine release in patients with multiple sclerosis. J Neuroimmunol 156(1–2):195–203

    CAS  PubMed  Google Scholar 

  83. Buttmann M, Goebeler M, Toksoy A, Schmid S, Graf W, Berberich-Siebelt F, Rieckmann P (2005) Subcutaneous interferon-beta injections in patients with multiple sclerosis initiate inflammatory skin reactions by local chemokine induction. J Neuroimmunol 168(1–2):175–182

    CAS  PubMed  Google Scholar 

  84. Seo JY, Yaneva R, Cresswell P (2011) Viperin: a multifunctional, interferon-inducible protein that regulates virus replication. Cell Host Microbe 10(6):534–539

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Liu SY, Sanchez DJ, Cheng G (2011) New developments in the induction and antiviral effectors of type I interferon. Curr Opin Immunol 23(1):57–64

    PubMed  Google Scholar 

  86. Gao S, von der Malsburg A, Dick A, Faelber K, Schröder GF, Haller O, Kochs G, Daumke O (2011) Structure of myxovirus resistance protein a reveals intra- and intermolecular domain interactions required for the antiviral function. Immunity 35(4):514–525

    CAS  PubMed  Google Scholar 

  87. von der Malsburg A, Abutbul-Ionita I, Haller O, Kochs G, Danino D (2011) Stalk domain of the dynamin-like MxA GTPase protein mediates membrane binding and liposome tubulation via the unstructured L4 loop. J Biol Chem 286(43):37858–37865. doi:10.1074/jbc.M111.249037

    PubMed  Google Scholar 

  88. Haller O, Kochs G (2011) Human MxA protein: an interferon-induced dynamin-like GTPase with broad antiviral activity. J Interferon Cytokine Res 31(1):79–87

    CAS  PubMed  Google Scholar 

  89. Itsui Y, Sakamoto N, Kakinuma S, Nakagawa M, Sekine-Osajima Y, Tasaka-Fujita M, Nishimura-Sakurai Y, Suda G, Karakama Y, Mishima K, Yamamoto M, Watanabe T, Ueyama M, Funaoka Y, Azuma S, Watanabe M (2009) Antiviral effects of the interferon-induced protein guanylate binding protein 1 and its interaction with the hepatitis C virus NS5B protein. Hepatology 50(6):1727–1737

    CAS  PubMed  Google Scholar 

  90. Kim BH, Shenoy AR, Kumar P, Das R, Tiwari S, MacMicking JD (2011) A family of IFN-beta-inducible 65-kD GTPases protects against bacterial infection. Science 332(6030):717–721

    CAS  PubMed  Google Scholar 

  91. Hovanessian AG (2007) On the discovery of interferon-inducible, double-stranded RNA activated enzymes: the 2′-5′oligoadenylate synthetases and the protein kinase PKR. Cytokine Growth Factor Rev 18(5–6):351–361

    CAS  PubMed  Google Scholar 

  92. Silverman RH (2007) Viral encounters with 2′,5′-oligoadenylate synthetase and RNase L during the interferon antiviral response. J Virol 81(23):12720–12729

    CAS  PubMed Central  PubMed  Google Scholar 

  93. O'Brien M, Lonergan R, Costelloe L, O'Rourke K, Fletcher JM, Kinsella K, Sweeney C, Antonelli G, Mills KH, O'Farrelly C, Hutchinson M, Tubridy N (2010) OAS1: a multiple sclerosis susceptibility gene that influences disease severity. Neurology 75(5):411–418

    PubMed  Google Scholar 

  94. Cagliani R, Fumagalli M, Guerini FR, Riva S, Galimberti D, Comi GP, Agliardi C, Scarpini E, Pozzoli U, Forni D, Caputo D, Asselta R, Biasin M, Paraboschi EM, Bresolin N, Clerici M, Sironi M (2012) Identification of a new susceptibility variant for multiple sclerosis in OAS1 by population genetics analysis. Hum Genet 131(1):87–97. doi:10.1007/s00439-011-1053-2

    PubMed  Google Scholar 

  95. Fensterl V, Sen GC (2011) The ISG56/IFIT1 gene family. J Interferon Cytokine Res 31(1):71–78

    CAS  PubMed  Google Scholar 

  96. Pindel A, Sadler A (2011) The role of protein kinase R in the interferon response. J Interferon Cytokine Res 31(1):59–70. doi:10.1089/jir.2010.0099

    CAS  PubMed  Google Scholar 

  97. Toroney R, Bevilacqua PC (2009) PKR and the ribosome compete for mRNA. Nat Chem Biol 5(12):873–874. doi:10.1038/nchembio.262

    CAS  PubMed  Google Scholar 

  98. Xiao S, Li D, Zhu HQ, Song MG, Pan XR, Jia PM, Peng LL, Dou AX, Chen GQ, Chen SJ, Chen Z, Tong JH (2006) RIG-G as a key mediator of the antiproliferative activity of interferon-related pathways through enhancing p21 and p27 proteins. Proc Natl Acad Sci U S A 103(44):16448–16453

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Hallen LC, Burki Y, Ebeling M, Broger C, Siegrist F, Oroszlan-Szovik K, Bohrmann B, Certa U, Foser S (2007) Antiproliferative activity of the human IFN-alpha-inducible protein IFI44. J Interferon Cytokine Res 27(8):675–680

    CAS  PubMed  Google Scholar 

  100. Leaman DW, Chawla-Sarkar M, Vyas K, Reheman M, Tamai K, Toji S, Borden EC (2002) Identification of X-linked inhibitor of apoptosis-associated factor-1 as an interferon-stimulated gene that augments TRAIL Apo2L-induced apoptosis. J Biol Chem 277(32):28504–28511

    CAS  PubMed  Google Scholar 

  101. Hebb AL, Moore CS, Bhan V, Robertson GS (2008) Targeting apoptosis to treat multiple sclerosis. Curr Drug Discov Technol 5(1):75–77

    CAS  PubMed  Google Scholar 

  102. Sharief MK, Semra YK (2001) Upregulation of the inhibitor of apoptosis proteins in activated T lymphocytes from patients with multiple sclerosis. J Neuroimmunol 119(2):350–357

    CAS  PubMed  Google Scholar 

  103. Sharief MK, Noori MA, Zoukos Y (2002) Reduced expression of the inhibitor of apoptosis proteins in T cells from patients with multiple sclerosis following interferon-beta therapy. J Neuroimmunol 129(1–2):224–231

    CAS  PubMed  Google Scholar 

  104. Kirk S, Frank JA, Karlik S (2004) Angiogenesis in multiple sclerosis: is it good, bad or an epiphenomenon? J Neurol Sci 217(2):125–130

    CAS  PubMed  Google Scholar 

  105. Holley JE, Newcombe J, Whatmore JL, Gutowski NJ (2010) Increased blood vessel density and endothelial cell proliferation in multiple sclerosis cerebral white matter. Neurosci Lett 470(1):65–70. doi:10.1016/j.neulet.2009.12.059

    CAS  PubMed  Google Scholar 

  106. Angiolillo AL, Sgadari C, Taub DD, Liao F, Farber JM, Maheshwari S, Kleinman HK, Reaman GH, Tosato G (1995) Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med 182(1):155–162

    CAS  PubMed  Google Scholar 

  107. Feldman ED, Weinreich DM, Carroll NM, Burness ML, Feldman AL, Turner E, Xu H, Alexander HR Jr (2006) Interferon gamma-inducible protein 10 selectively inhibits proliferation and induces apoptosis in endothelial cells. Ann Surg Oncol 13(1):125–133

    PubMed  Google Scholar 

  108. Mittelstadt ML, Patel RC (2012) AP-1 mediated transcriptional repression of matrix metalloproteinase-9 by recruitment of histone deacetylase 1 in response to interferon beta. PLoS One 7(8):e42152. doi:10.1371/journal.pone.0042152

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Bernal F, Elias B, Hartung HP, Kieseier BC (2009) Regulation of matrix metalloproteinases and their inhibitors by interferon-beta: a longitudinal study in multiple sclerosis patients. Mult Scler 15(6):721–727. doi:10.1177/1352458509102920

    CAS  PubMed  Google Scholar 

  110. Baggiolini M, Clark-Lewis I (1992) Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett 307(1):97–101

    CAS  PubMed  Google Scholar 

  111. Lund BT, Ashikian N, Ta HQ, Chakryan Y, Manoukian K, Groshen S, Gilmore W, Cheema GS, Stohl W, Burnett ME, Ko D, Kachuck NJ, Weiner LP (2004) Increased CXCL8 (IL-8) expression in multiple sclerosis. J Neuroimmunol 155(1–2):161–171

    CAS  PubMed  Google Scholar 

  112. Li A, Dubey S, Varney ML, Dave BJ, Singh RK (2003) IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 170(6):3369–3376

    CAS  PubMed  Google Scholar 

  113. Stamenkovic I (2003) Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol 200(4):448–464

    CAS  PubMed  Google Scholar 

  114. Osman M, Tortorella M, Londei M, Quaratino S (2002) Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases define the migratory characteristics of human monocyte-derived dendritic cells. Immunology 105(1):73–82

    CAS  PubMed  Google Scholar 

  115. Yen JH, Kong W, Ganea D (2010) IFN-beta inhibits dendritic cell migration through STAT-1-mediated transcriptional suppression of CCR7 and matrix metalloproteinase 9. J Immunol 184(7):3478–3486. doi:10.4049/jimmunol.0902542

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Stüve O, Dooley NP, Uhm JH, Antel JP, Francis GS, Williams G, Yong VW (1996) Interferon beta-1b decreases the migration of T lymphocytes in vitro: effects on matrix metalloproteinase-9. Ann Neurol 40(6):853–863

    PubMed  Google Scholar 

  117. Descamps FJ, Van den Steen PE, Nelissen I, Van Damme J, Opdenakker G (2003) Remnant epitopes generate autoimmunity: from rheumatoid arthritis and multiple sclerosis to diabetes. Adv Exp Med Biol 535:69–77

    CAS  PubMed  Google Scholar 

  118. Van den Steen PE, Proost P, Wuyts A, Van Damme J, Opdenakker G (2000) Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-alpha and leaves RANTES and MCP-2 intact. Blood 96(8):2673–2681

    PubMed  Google Scholar 

  119. Waubant E, Goodkin DE, Gee L, Bacchetti P, Sloan R, Stewart T, Andersson PB, Stabler G, Miller K (1999) Serum MMP-9 and TIMP-1 levels are related to MRI activity in relapsing multiple sclerosis. Neurology 53(7):1397–1401

    CAS  PubMed  Google Scholar 

  120. Alexander JS, Harris MK, Wells SR, Mills G, Chalamidas K, Ganta VC, McGee J, Jennings MH, Gonzalez-Toledo E, Minagar A (2010) Alterations in serum MMP-8, MMP-9, IL-12p40 and IL-23 in multiple sclerosis patients treated with interferon-beta1b. Mult Scler 16(7):801–809. doi:10.1177/1352458510370791

    CAS  PubMed  Google Scholar 

  121. Avolio C, Ruggieri M, Giuliani F, Liuzzi GM, Leante R, Riccio P, Livrea P, Trojano M (2003) Serum MMP-2 and MMP-9 are elevated in different multiple sclerosis subtypes. J Neuroimmunol 136(1–2):46–53

    CAS  PubMed  Google Scholar 

  122. Benesová Y, Vasku A, Novotná H, Litzman J, Stourac P, Beránek M, Kadanka Z, Bednarík J (2009) Matrix metalloproteinase-9 and matrix metalloproteinase-2 as biomarkers of various courses in multiple sclerosis. Mult Scler 15(3):316–322. doi:10.1177/1352458508099482

    PubMed  Google Scholar 

  123. Dunkelberger JR, Song WC (2010) Complement and its role in innate and adaptive immune responses. Cell Res 20(1):34–50. doi:10.1038/cr.2009.139

    CAS  PubMed  Google Scholar 

  124. Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11(9):785–797. doi:10.1038/ni.1923

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Davis AE 3rd, Lu F, Mejia P (2010) C1 inhibitor, a multi-functional serine protease inhibitor. Thromb Haemost 104(5):886–893. doi:10.1160/TH10-01-0073

    CAS  PubMed  Google Scholar 

  126. Cai S, Dole VS, Bergmeier W, Scafidi J, Feng H, Wagner DD, Davis AE III (2005) A direct role for C1 inhibitor in regulation of leukocyte adhesion. J Immunol 174(10):6462–6466

    CAS  PubMed  Google Scholar 

  127. Engelhardt B, Ransohoff RM (2012) Capture, crawl, cross: the T cell code to breach the blood–brain barriers. Trends Immunol 33(12):579–589. doi:10.1016/j.it.2012.07.004

    CAS  PubMed  Google Scholar 

  128. Paun A, Pitha PM (2007) The IRF family, revisited. Biochimie 89(6–7):744–753

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Taniguchi T, Ogasawara K, Takaoka A, Tanaka N (2001) IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 19:623–655

    CAS  PubMed  Google Scholar 

  130. Kuo TC, Calame KL (2004) B lymphocyte-induced maturation protein (Blimp)-1, IFN regulatory factor (IRF)-1, and IRF-2 can bind to the same regulatory sites. J Immunol 173(9):5556–5563

    CAS  PubMed  Google Scholar 

  131. Martins G, Calame K (2008) Regulation and functions of Blimp-1 in T and B lymphocytes. Annu Rev Immunol 26:133–169. doi:10.1146/annurev.immunol.26.021607.090241

    CAS  PubMed  Google Scholar 

  132. Nutt SL, Fairfax KA, Kallies A (2007) BLIMP1 guides the fate of effector B and T cells. Nat Rev Immunol 7(12):923–927

    CAS  PubMed  Google Scholar 

  133. Doody GM, Stephenson S, McManamy C, Tooze RM (2007) PRDM1/BLIMP-1 modulates IFN-gamma-dependent control of the MHC class I antigen-processing and peptide-loading pathway. J Immunol 179(11):7614–7623

    CAS  PubMed  Google Scholar 

  134. Boyer LA, Latek RR, Peterson CL (2004) The SANT domain: a unique histone-tail-binding module? Nat Rev Mol Cell Biol 5(2):158–163

    CAS  PubMed  Google Scholar 

  135. Veals SA, Schindler C, Leonard D, Fu XY, Aebersold R, Darnell JE Jr, Levy DE (1992) Subunit of an alpha-interferon-responsive transcription factor is related to interferon regulatory factor and Myb families of DNA-binding proteins. Mol Cell Biol 12(8):3315–3324

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Schmidt A, Rothenfusser S, Hopfner KP (2012) Sensing of viral nucleic acids by RIG-I: from translocation to translation. Eur J Cell Biol 91(1):78–85

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Loo YM, Gale M Jr (2011) Immune signaling by RIG-I-like receptors. Immunity 34(5):680–692

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Sato M, Hata N, Asagiri M, Nakaya T, Taniguchi T, Tanaka N (1998) Positive feedback regulation of type I IFN genes by the IFN-inducible transcription factor IRF-7. FEBS Lett 441(1):106–110

    CAS  PubMed  Google Scholar 

  139. Panne D, Maniatis T, Harrison SC (2007) An atomic model of the interferon-beta enhanceosome. Cell 129(6):1111–1123

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Tomura K, Narumi S (1999) Differential induction of interferon (IFN)-inducible protein 10 following differentiation of a monocyte, macrophage cell lineage is related to the changes of nuclear proteins bound to IFN stimulus response element and kappaB sites. Int J Mol Med 3(5):477–484

    CAS  PubMed  Google Scholar 

  141. Zhang D, Zhang DE (2011) Interferon-stimulated gene 15 and the protein ISGylation system. J Interferon Cytokine Res 31(1):119–130

    CAS  PubMed  Google Scholar 

  142. Wong JJ, Pung YF, Sze NS, Chin KC (2006) HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates type I IFN-induced ISGylation of protein targets. Proc Natl Acad Sci U S A 103(28):10735–10740

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Zhao C, Denison C, Huibregtse JM, Gygi S, Krug RM (2005) Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. Proc Natl Acad Sci U S A 102(29):10200–10205

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63. doi:10.1038/nrg2484

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Waschbisch A, Atiya M, Linker RA, Potapov S, Schwab S, Derfuss T (2011) Glatiramer acetate treatment normalizes deregulated microRNA expression in relapsing remitting multiple sclerosis. PLoS One 6(9):e24604. doi:10.1371/journal.pone.0024604

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Angerstein C, Hecker M, Paap BK, Koczan D, Thamilarasan M, Thiesen HJ, Zettl UK (2012) Integration of MicroRNA databases to study MicroRNAs associated with multiple sclerosis. Mol Neurobiol 45(3):520–535. doi:10.1007/s12035-012-8270-0

    CAS  PubMed  Google Scholar 

  147. Kraft S, Kinet JP (2007) New developments in FcepsilonRI regulation, function and inhibition. Nat Rev Immunol 7(5):365–378

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank our laboratory assistants Gabriele Gillwaldt, Ina Schröder, and Ildikó Tóth for their help in performing the experiments. We are also grateful to study nurse Christa Tiffert for her excellent support in conducting this study.

Financial Disclosure

The Affymetrix microarray experiments were partially funded by Merck Serono. The funder had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflicts of Interest

U.K. Zettl received research support as well as speaking fees from Bayer, Biogen Idec, Merck Serono, Novartis, Sanofi-Aventis, Almirall, and Teva. M. Hecker received speaking fees from Bayer HealthCare, and Novartis. C. Hartmann, O. Kandulski, B.K. Paap, D. Koczan, and H.-J. Thiesen declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hecker.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Online Resource 1

Table of the 96 genes that were up- or down-regulated in the PBMC of the MS patients after the start of subcutaneous IFN-beta-1a treatment. In comparison to pre-treatment levels, the genes were found to be expressed at higher or lower transcript levels at at least one time point during therapy. The spreadsheet provides diverse types of information for each gene, e.g. Entrez ID and the official full name, as well as the MAID filtering results, GO term memberships, TFBS and blood cell type specificities. (XLS 115 kb)

Online Resource 2

MX1 mRNA expression levels. The signal intensities for MX1 are presented for all 12 MS patients and all 5 time points from baseline up to two years into treatment. (XLS 28 kb)

Online Resource 3

Short- and long-term changes in blood gene expression during a different IFN-beta therapy. Based on similar temporal expression patterns, six gene clusters were defined using the microarray data of 12 MS patients treated with subcutaneous (sc.) IFN-beta-1a (Fig. 2). Here, we visualized the averaged mRNA dynamics of these genes in the course of therapy with IFN-beta-1b sc. (n = 25 patients). The data were obtained in the same manner as in the present study. However, a different type of microarray was used, and because of that, one of the 96 filtered genes (TREML1, cluster 5) was not contained in this data set. As in Fig. 2, each line shows the mean standardized expression levels (z-scores) of a gene. In general, the gene regulatory effects of the two IFN-beta preparations were very similar. Differences were observed only early in treatment (after 2 days), when the up-regulation of several genes was stronger after IFN-beta-1a sc. administration. (JPEG 621 kb)

High Resolution (TIFF 886 kb)

Online Resource 4

Validation of the Affymetrix microarray data by real-time PCR experiments. Real-time PCR was performed for 15 genes that showed significant expression changes in response to IFN-beta therapy in the microarray data. Additionally, GAPDH was measured as a normalization control. The table provides the IDs of the TaqMan assays used, the genes’ transcript levels averaged over the patients as well as the p-values for all time point comparisons. Pearson correlation coefficients and respective p-values were calculated to assess whether the real-time PCR data resemble the microarray data. (XLS 37 kb)

Online Resource 5

Overrepresented terms of the Gene Ontology. P-values were computed for each GO term using the R package GOstats [37]. Functional categories with p-value < 0.001 and to which at least 4 of the 96 filtered genes are associated (“Count”) are shown in the table. “ExpCount” gives the expected number of genes that would belong to the respective term in an arbitrary equally-sized list of genes. (XLS 19 kb)

Online Resource 6

Sub-networks identified in the full gene interaction network (Fig. 4) using the MCODE method. Five disjoint clusters emerged. For instance, on the top right, a cluster is shown that contains IRF1–2 and PRDM1, which are TFs competing for the same regulatory binding sites. On the bottom right, there is a cluster that is mainly built from literature-derived gene interactions linked to chemokines. The network clustering result is available from the authors as a Cytoscape session file upon request. (JPEG 831 kb)

High Resolution (TIFF 990 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hecker, M., Hartmann, C., Kandulski, O. et al. Interferon-beta therapy in multiple sclerosis: the short-term and long-term effects on the patients’ individual gene expression in peripheral blood. Mol Neurobiol 48, 737–756 (2013). https://doi.org/10.1007/s12035-013-8463-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8463-1

Keywords

Navigation