Skip to main content

Advertisement

Log in

HMGB1 Contributes to Regeneration After Spinal Cord Injury in Adult Zebrafish

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

High mobility group box 1 (HMGB1, also called amphoterin) facilitates neurite outgrowth in early development, yet can exacerbate pathology and inhibit regeneration by inducing adverse neuroinflammation when released from dying cells, suggesting that HMGB1 plays a critical, yet undefined role in neuroregeneration. We explored whether HMGB1 contributes to recovery after complete spinal cord transection in adult zebrafish. Quantitative PCR and in situ hybridization revealed that HMGB1 mRNA levels decreased between 12 h to 11 days after spinal cord injury (SCI), then returned to basal levels by 21 days. Western blot and immunohistological analyses indicated that the time course of HMGB1 protein expression after SCI parallels that of mRNA. Immunofluorescence staining revealed that HMGB1 translocates from nuclei into the cytoplasm of spinal motoneurons at 4 and 12 h (acute stage) following SCI, then accumulates in the nuclei of motoneurons during the ensuing chronic stage (after 6 days following SCI). Immunohistology of transgenic zebrafish, expressing green fluorescent protein in blood vessels, showed enhanced HMGB1 expression in blood vessels in the vicinity of motoneurons. Application of anti-sense HMGB1 morpholinos inhibited locomotor recovery by 34 % and decreased axonal regeneration by 34 % compared to fish treated with a control morpholino. The present study shows that HMGB1 expression increases in both endothelial cells and motoneurons, suggesting that HMGB1 promotes recovery from SCI not only through enhancing neuroregeneration, but also by increasing angiogenesis. The inflammatory effects of HMGB1 are minimized through the decrease in HMGB1 expression during the acute stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ma L, Yu YM, Guo Y, Hart RP, Schachner M (2012) Cysteine- and glycine-rich protein 1a is involved in spinal cord regeneration in adult zebrafish. Eur J Neurosci 35:353–365

    Article  PubMed  Google Scholar 

  2. Fang P, Schachner M, Shen YQ (2012) HMGB1 in development and diseases of the central nervous system. Mol Neurobiol 45:499–506

    Article  CAS  PubMed  Google Scholar 

  3. Guazzi S, Strangio A, Franzi AT, Bianchi ME (2003) HMGB1, an architectural chromatin protein and extracellular signalling factor, has a spatially and temporally restricted expression pattern in mouse brain. Gene Expr Patterns 3:29–33

    Article  CAS  PubMed  Google Scholar 

  4. Enokido Y, Yoshitake A, Ito H, Okazawa H (2008) Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain. Biochem Biophys Res Commun 376:128–133

    Article  CAS  PubMed  Google Scholar 

  5. Daston MM, Ratner N (1994) Amphoterin (P30, HMG-1) and RIP are early markers of oligodendrocytes in the developing rat spinal cord. J Neurocytol 23:323–332

    Article  CAS  PubMed  Google Scholar 

  6. Tenenbaum T, Essmann F, Adam R, Seibt A, Janicke RU, Novotny GE, Galla HJ, Schroten H (2006) Cell death, caspase activation, and HMGB1 release of porcine choroid plexus epithelial cells during Streptococcus suis infection in vitro. Brain Res 1100:1–12

    Article  CAS  PubMed  Google Scholar 

  7. Gao HM, Zhou H, Zhang F, Wilson BC, Kam W, Hong JS (2011) HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration. J Neurosci 31:1081–1092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Zhao X, Kuja-Panula J, Rouhiainen A, Chen YC, Panula P, Rauvala H (2011) High mobility group box-1 (HMGB1; amphoterin) is required for zebrafish brain development. J Biol Chem 286:23200–23213

    Article  CAS  PubMed  Google Scholar 

  9. Chou DK, Evans JE, Jungalwala FB (2001) Identity of nuclear high-mobility-group protein, HMG-1, and sulfoglucuronyl carbohydrate-binding protein, SBP-1, in brain. J Neurochem 77:120–131

    Article  CAS  PubMed  Google Scholar 

  10. Merenmies J, Pihlaskari R, Laitinen J, Wartiovaara J, Rauvala H (1991) 30-kDa heparin-binding protein of brain (amphoterin) involved in neurite outgrowth. Amino acid sequence and localization in the filopodia of the advancing plasma membrane. J Biol Chem 266:16722–16729

    CAS  PubMed  Google Scholar 

  11. Rauvala H, Pihlaskari R (1987) Isolation and some characteristics of an adhesive factor of brain that enhances neurite outgrowth in central neurons. J Biol Chem 262:16625–16635

    CAS  PubMed  Google Scholar 

  12. Kawabata H, Setoguchi T, Yone K, Souda M, Yoshida H, Kawahara K, Maruyama I, Komiya S (2010) High mobility group box 1 is upregulated after spinal cord injury and is associated with neuronal cell apoptosis. Spine 35:1109–1115 (Phila Pa 1976)

    PubMed  Google Scholar 

  13. Kim JB, Sig Choi J, Yu YM, Nam K, Piao CS, Kim SW, Lee MH, Han PL, Park JS, Lee JK (2006) HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci 26:6413–6421

    Article  CAS  PubMed  Google Scholar 

  14. Blanco P, Palucka AK, Pascual V, Banchereau J (2008) Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev 19:41–52

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Rauvala H, Rouhiainen A (2010) Physiological and pathophysiological outcomes of the interactions of HMGB1 with cell surface receptors. Biochim Biophys Acta 1799:164–170

    Article  CAS  PubMed  Google Scholar 

  16. Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C et al (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8:487–496

    Article  CAS  PubMed  Google Scholar 

  17. Urbonaviciute V, Furnrohr BG, Meister S, Munoz L, Heyder P, De Marchis F, Bianchi ME, Kirschning C, Wagner H, Manfredi AA et al (2008) Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J Exp Med 205:3007–3018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Wahamaa H, Schierbeck H, Hreggvidsdottir HS, Palmblad K, Aveberger AC, Andersson U, Harris HE (2011) High mobility group box protein 1 in complex with lipopolysaccharide or IL-1 promotes an increased inflammatory phenotype in synovial fibroblasts. Arthritis Res Ther 13:R136

    Article  PubMed Central  PubMed  Google Scholar 

  19. Huang Y, Xie K, Li J, Xu N, Gong G, Wang G, Yu Y, Dong H, Xiong L (2011) Beneficial effects of hydrogen gas against spinal cord ischemia-reperfusion injury in rabbits. Brain Res 10:125–136

    Article  Google Scholar 

  20. Wang Q, Ding Q, Zhou Y, Gou X, Hou L, Chen S, Zhu Z, Xiong L (2009) Ethyl pyruvate attenuates spinal cord ischemic injury with a wide therapeutic window through inhibiting high-mobility group box 1 release in rabbits. Anesthesiology 110:1279–1286

    Article  CAS  PubMed  Google Scholar 

  21. Shibasaki M, Sasaki M, Miura M, Mizukoshi K, Ueno H, Hashimoto S, Tanaka Y, Amaya F (2010) Induction of high mobility group box-1 in dorsal root ganglion contributes to pain hypersensitivity after peripheral nerve injury. Pain 149:514–521

    Article  CAS  PubMed  Google Scholar 

  22. Hayakawa K, Pham LD, Katusic ZS, Arai K, Lo EH (2012) Astrocytic high-mobility group box 1 promotes endothelial progenitor cell-mediated neurovascular remodeling during stroke recovery. Proc Natl Acad Sci U S A 109:7505–7510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248:307–318

    Article  CAS  PubMed  Google Scholar 

  24. Fang P, Lin JF, Pan HC, Shen YQ, Schachner M (2012) A surgery protocol for adult zebrafish spinal cord injury. J Genet Genomics 39:481–487

    Article  PubMed  Google Scholar 

  25. Goff LA, Bowers J, Schwalm J, Howerton K, Getts RC, Hart RP (2004) Evaluation of sense-strand mRNA amplification by comparative quantitative PCR. BMC Genomics 5:76

    Article  PubMed Central  PubMed  Google Scholar 

  26. Song G, Li Q, Long Y, Hackett PB, Cui Z (2012) Effective expression-independent gene trapping and mutagenesis mediated by Sleeping Beauty transposon. J Genet Genomics 39:503–520

    Article  CAS  PubMed  Google Scholar 

  27. Pei DS, Sun YH, Chen SP, Wang YP, Hu W, Zhu ZY (2007) Zebrafish GAPDH can be used as a reference gene for expression analysis in cross-subfamily cloned embryos. Analytical biochemistry 363:291–293

    Article  CAS  PubMed  Google Scholar 

  28. Bernhardt RR, Tongiorgi E, Anzini P, Schachner M (1996) Increased expression of specific recognition molecules by retinal ganglion cells and by optic pathway glia accompanies the successful regeneration of retinal axons in adult zebrafish. J Comp Neurol 376:253–264

    Article  CAS  PubMed  Google Scholar 

  29. Lin JF, Pan HC, Ma LP, Shen YQ, Schachner M (2012) The Cell Neural Adhesion Molecule Contactin-2 (TAG-1) is beneficial for functional recovery after spinal cord injury in adult zebrafish. PLoS One 7:e52376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Guo Y, Ma L, Cristofanilli M, Hart RP, Hao A, Schachner M (2011) Transcription factor Sox11b is involved in spinal cord regeneration in adult zebrafish. Neuroscience 172:329–341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Pan HC, Lin JF, Ma LP, Shen YQ, Schachner M (2013) Major vault protein promotes locomotor recovery and regeneration after spinal cord injury in adult zebrafish. Eur J Neurosci 37:203–211

    Article  PubMed  Google Scholar 

  32. Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26:216–220

    Article  CAS  PubMed  Google Scholar 

  33. Becker CG, Lieberoth BC, Morellini F, Feldner J, Becker T, Schachner M (2004) L1.1 is involved in spinal cord regeneration in adult zebrafish. J Neurosci 24:7837–7842

    Article  CAS  PubMed  Google Scholar 

  34. Becker T, Wullimann MF, Becker CG, Bernhardt RR, Schachner M (1997) Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol 377:577–595

    Article  CAS  PubMed  Google Scholar 

  35. Yu YM, Cristofanilli M, Valiveti A, Ma L, Yoo M, Morellini F, Schachner M (2011) The extracellular matrix glycoprotein tenascin-C promotes locomotor recovery after spinal cord injury in adult zebrafish. Neuroscience 183:238–250

    Article  CAS  PubMed  Google Scholar 

  36. Hugnot JP, Franzen R (2011) The spinal cord ependymal region: a stem cell niche in the caudal central nervous system. Front Biosci 16:1044–1059

    Article  CAS  Google Scholar 

  37. Becker T, Becker CG (2001) Regenerating descending axons preferentially reroute to the gray matter in the presence of a general macrophage/microglial reaction caudal to a spinal transection in adult zebrafish. J Comp Neurol 433:131–147

    Article  CAS  PubMed  Google Scholar 

  38. Muhammad S, Barakat W, Stoyanov S, Murikinati S, Yang H, Tracey KJ, Bendszus M, Rossetti G, Nawroth PP, Bierhaus A et al (2008) The HMGB1 receptor RAGE mediates ischemic brain damage. J Neurosci 28:12023–12031

    Article  CAS  PubMed  Google Scholar 

  39. Kyritsis N, Kizil C, Zocher S, Kroehne V, Kaslin J, Freudenreich D, Iltzsche A, Brand M (2012) Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science 338:1353–1356

    Article  CAS  PubMed  Google Scholar 

  40. Kitahara T, Takeishi Y, Harada M, Niizeki T, Suzuki S, Sasaki T, Ishino M, Bilim O, Nakajima O, Kubota I (2008) High-mobility group box 1 restores cardiac function after myocardial infarction in transgenic mice. Cardiovasc Res 80:40–46

    Article  CAS  PubMed  Google Scholar 

  41. Lei C, Lin S, Zhang C, Tao W, Dong W, Hao Z, Liu M, Wu B (2013) Effects of high-mobility group box1 on cerebral angiogenesis and neurogenesis after intracerebral hemorrhage. Neuroscience 229:12–19

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project is supported by the National Natural Science Foundation of China (No. 81072622, No. 31271580), Guangdong Natural Science Foundation (S2012010009480) and the Li Kashing Foundation. Melitta Schachner is New Jersey Professor of Spinal Cord Research. We are grateful to Zilong Wen for kindly providing the Fli1a::EGFP transgenic fish.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Melitta Schachner or Yan-Qin Shen.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 838 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, P., Pan, HC., Lin, S.L. et al. HMGB1 Contributes to Regeneration After Spinal Cord Injury in Adult Zebrafish. Mol Neurobiol 49, 472–483 (2014). https://doi.org/10.1007/s12035-013-8533-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8533-4

Keywords

Navigation