Skip to main content

Advertisement

Log in

Connexins-Mediated Glia Networking Impacts Myelination and Remyelination in the Central Nervous System

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In the central nervous system (CNS), the glial gap junctions are established among astrocytes (ASTs), oligodendrocytes (OLs), and/or between ASTs and OLs due to the expression of membrane proteins called connexins (Cxs). Together, the glial cells form a network of communicating cells that is important for the homeostasis of brain function for its involvement in the intercellular calcium wave propagation, exchange of metabolic substrates, cell proliferation, migration, and differentiation. Alternatively, Cxs are also involved in hemichannel function and thus participate in gliotransmission. In recent years, pathologic changes of oligodendroglia or demyelination found in transgenic mice with different subsets of Cxs or pharmacological insults suggest that glial Cxs may participate in the regulation of the myelination or remyelination processes. However, little is known about the underlying mechanisms. In this review, we will mainly focus on the functions of Cx-mediated gap junction channels, as well as hemichannels, in brain glial cells and discuss the way by which they impact myelination and remyelination. These aspects will be considered at the light of recent genetic and non-genetic studies related to demyelination and remyelination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Miller RH (1996) Oligodendrocyte origins. Trends Neurosci 19(3):92–96

    CAS  PubMed  Google Scholar 

  2. Gard AL, Pfeiffer SE (1989) Oligodendrocyte progenitors isolated directly from developing telencephalon at a specific phenotypic stage: myelinogenic potential in a defined environment. Development 106(1):119–132

    CAS  PubMed  Google Scholar 

  3. Armstrong RC, Dorn HH, Kufta CV, Friedman E, Dubois-Dalcq ME (1992) Pre-oligodendrocytes from adult human CNS. J Neurosci 12(4):1538–1547

    CAS  PubMed  Google Scholar 

  4. Reynolds R, Wilkin GP (1988) Development of macroglial cells in rat cerebellum. II. An in situ immunohistochemical study of oligodendroglial lineage from precursor to mature myelinating cell. Development 102(2):409–425

    CAS  PubMed  Google Scholar 

  5. Scolding NJ, Frith S, Linington C, Morgan BP, Campbell AK, Compston DA (1989) Myelin-oligodendrocyte glycoprotein (MOG) is a surface marker of oligodendrocyte maturation. J Neuroimmunol 22(3):169–176

    CAS  PubMed  Google Scholar 

  6. Zhang SC (2001) Defining glial cells during CNS development. Nat Rev Neurosci 2(11):840–843

    CAS  PubMed  Google Scholar 

  7. Ren Y, Wang H, Xiao L (2013) Improving myelin/oligodendrocyte-related dysfunction: a new mechanism of antipsychotics in the treatment of schizophrenia? Int J Neuropsychopharmacol 16(3):691–700

    CAS  PubMed  Google Scholar 

  8. Nicolay DJ, Doucette JR, Nazarali AJ (2007) Transcriptional control of oligodendrogenesis. Glia 55(13):1287–1299. doi:10.1002/glia.20540

    PubMed  Google Scholar 

  9. Wegner M (2008) A matter of identity: transcriptional control in oligodendrocytes. J Mol Neurosci 35(1):3–12

    CAS  PubMed  Google Scholar 

  10. Rosenberg SS, Kelland EE, Tokar E, De la Torre AR, Chan JR (2008) The geometric and spatial constraints of the microenvironment induce oligodendrocyte differentiation. Proc Natl Acad Sci U S A 105(38):14662–14667

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Chong SY, Rosenberg SS, Fancy SP, Zhao C, Shen YA, Hahn AT, McGee AW, Xu X, Zheng B, Zhang LI, Rowitch DH, Franklin RJ, Lu QR, Chan JR (2012) Neurite outgrowth inhibitor Nogo-A establishes spatial segregation and extent of oligodendrocyte myelination. Proc Natl Acad Sci U S A 109(4):1299–1304

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Ransom BRG, C (2013) Gap junctions, hemichannels. Neuroglia, third edn, Oxford University Press

  13. Cotrina ML, Nedergaard M (2012) Brain connexins in demyelinating diseases: therapeutic potential of glial targets. Brain Res 1487:61–68

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Nualart-Marti A, Solsona C, Fields RD (2013) Gap junction communication in myelinating glia. Biochim Biophys Acta 1828(1):69–78

    CAS  PubMed  Google Scholar 

  15. Yeager M, Nicholson BJ (1996) Structure of gap junction intercellular channels. Curr Opin Struct Biol 6(2):183–192

    CAS  PubMed  Google Scholar 

  16. Bruzzone R, White TW, Paul DL (1996) Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem 238(1):1–27

    CAS  PubMed  Google Scholar 

  17. Balice-Gordon RJ, Bone LJ, Scherer SS (1998) Functional gap junctions in the Schwann cell myelin sheath. J Cell Biol 142(4):1095–1104

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Goodenough DA, Paul DL (2009) Gap junctions. Cold Spring Harb Perspect Biol 1(1):a002576. doi:10.1101/cshperspect.a002576

    PubMed Central  PubMed  Google Scholar 

  19. Bukauskas FF, Verselis VK (2004) Gap junction channel gating. Biochim Biophys Acta 1662(1–2):42–60

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Lampe PD, Lau AF (2000) Regulation of gap junctions by phosphorylation of connexins. Arch Biochem Biophys 384(2):205–215

    CAS  PubMed  Google Scholar 

  21. Nagy JI, Lynn BD, Tress O, Willecke K, Rash JE (2011) Connexin26 expression in brain parenchymal cells demonstrated by targeted connexin ablation in transgenic mice. Eur J Neurosci 34(2):263–271

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Kunzelmann P, Schroder W, Traub O, Steinhauser C, Dermietzel R, Willecke K (1999) Late onset and increasing expression of the gap junction protein connexin30 in adult murine brain and long-term cultured astrocytes. Glia 25(2):111–119

    CAS  PubMed  Google Scholar 

  23. Spray DC, Ye ZC, Ransom BR (2006) Functional connexin “hemichannels”: a critical appraisal. Glia 54(7):758–773

    PubMed  Google Scholar 

  24. Giaume C, Leybaert L, Naus CC, Sáez JC (2013) Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles. Front Pharmacol 4:88. doi:10.3389/fphar.2013.00088

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Orellana JA, Saez PJ, Cortes-Campos C, Elizondo RJ, Shoji KF, Contreras-Duarte S, Figueroa V, Velarde V, Jiang JX, Nualart F, Saez JC, Garcia MA (2012) Glucose increases intracellular free Ca(2+) in tanycytes via ATP released through connexin 43 hemichannels. Glia 60(1):53–68

    PubMed Central  PubMed  Google Scholar 

  26. Nagy JI, Dudek FE, Rash JE (2004) Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res Brain Res Rev 47(1–3):191–215

    CAS  PubMed  Google Scholar 

  27. Orthmann-Murphy JL, Abrams CK, Scherer SS (2008) Gap junctions couple astrocytes and oligodendrocytes. J Mol Neurosci 35(1):101–116

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Altevogt BM, Kleopa KA, Postma FR, Scherer SS, Paul DL (2002) Connexin29 is uniquely distributed within myelinating glial cells of the central and peripheral nervous systems. J Neurosci 22(15):6458–6470

    CAS  PubMed  Google Scholar 

  29. Kamasawa N, Sik A, Morita M, Yasumura T, Davidson KG, Nagy JI, Rash JE (2005) Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: implications for ionic homeostasis and potassium siphoning. Neuroscience 136(1):65–86

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Magnotti LM, Goodenough DA, Paul DL (2011) Functional heterotypic interactions between astrocyte and oligodendrocyte connexins. Glia 59(1):26–34

    PubMed Central  PubMed  Google Scholar 

  31. Wolff JR, Stuke K, Missler M, Tytko H, Schwarz P, Rohlmann A, Chao TI (1998) Autocellular coupling by gap junctions in cultured astrocytes: a new view on cellular autoregulation during process formation. Glia 24(1):121–140

    CAS  PubMed  Google Scholar 

  32. Arroyo EJ, Scherer SS (2000) On the molecular architecture of myelinated fibers. Histochem Cell Biol 113(1):1–18

    CAS  PubMed  Google Scholar 

  33. Cai J, Qi Y, Hu X, Tan M, Liu Z, Zhang J, Li Q, Sander M, Qiu M (2005) Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron 45(1):41–53

    CAS  PubMed  Google Scholar 

  34. Fogarty M, Richardson WD, Kessaris N (2005) A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development 132(8):1951–1959

    CAS  PubMed  Google Scholar 

  35. Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson WD (2006) Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci 9(2):173–179

    CAS  PubMed  Google Scholar 

  36. Sturrock RR (1980) Myelination of the mouse corpus callosum. Neuropathol Appl Neurobiol 6(6):415–420

    CAS  PubMed  Google Scholar 

  37. Rivers LE, Young KM, Rizzi M, Jamen F, Psachoulia K, Wade A, Kessaris N, Richardson WD (2008) PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 11(12):1392–1401

    CAS  PubMed  Google Scholar 

  38. Dawson MR, Polito A, Levine JM, Reynolds R (2003) NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci 24(2):476–488

    CAS  PubMed  Google Scholar 

  39. Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9(11):839–855

    CAS  PubMed  Google Scholar 

  40. Miyata T, Kawaguchi D, Kawaguchi A, Gotoh Y (2010) Mechanisms that regulate the number of neurons during mouse neocortical development. Curr Opin Neurobiol 20(1):22–28

    CAS  PubMed  Google Scholar 

  41. Levers TE, Edgar JM, Price DJ (2001) The fates of cells generated at the end of neurogenesis in developing mouse cortex. J Neurobiol 48(4):265–277

    CAS  PubMed  Google Scholar 

  42. Takahashi T, Nowakowski RS, Caviness VS Jr (1995) The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J Neurosci 15(9):6046–6057

    CAS  PubMed  Google Scholar 

  43. Nagy JI, Rash JE (2000) Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Brain Res Rev 32(1):29–44

    CAS  PubMed  Google Scholar 

  44. Houades V, Koulakoff A, Ezan P, Seif I, Giaume C (2008) Gap junction-mediated astrocytic networks in the mouse barrel cortex. J Neurosci 28(20):5207–5217

    CAS  PubMed  Google Scholar 

  45. Parenti R, Cicirata F, Zappala A, Catania A, La Delia F, Cicirata V, Tress O, Willecke K (2010) Dynamic expression of Cx47 in mouse brain development and in the cuprizone model of myelin plasticity. Glia 58(13):1594–1609

    PubMed  Google Scholar 

  46. Menichella DM, Goodenough DA, Sirkowski E, Scherer SS, Paul DL (2003) Connexins are critical for normal myelination in the CNS. J Neurosci 23(13):5963–5973

    CAS  PubMed  Google Scholar 

  47. Grinspan JB, Coulalaglou M, Beesley JS, Carpio DF, Scherer SS (1998) Maturation-dependent apoptotic cell death of oligodendrocytes in myelin-deficient rats. J Neurosci Res 54(5):623–634

    CAS  PubMed  Google Scholar 

  48. Venance L, Cordier J, Monge M, Zalc B, Glowinski J, Giaume C (1995) Homotypic and heterotypic coupling mediated by gap junctions during glial cell differentiation in vitro. Eur J Neurosci 7(3):451–461

    CAS  PubMed  Google Scholar 

  49. Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, Liu Y, Tsingalia A, Jin L, Zhang PW, Pellerin L, Magistretti PJ, Rothstein JD (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487(7408):443–448

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Tress O, Maglione M, May D, Pivneva T, Richter N, Seyfarth J, Binder S, Zlomuzica A, Seifert G, Theis M, Dere E, Kettenmann H, Willecke K (2012) Panglial gap junctional communication is essential for maintenance of myelin in the CNS. J Neurosci 32(22):7499–7518

    CAS  PubMed  Google Scholar 

  51. Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322(5907):1551–1555

    CAS  PubMed  Google Scholar 

  52. Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Mobius W, Diaz F, Meijer D, Suter U, Hamprecht B, Sereda MW, Moraes CT, Frahm J, Goebbels S, Nave KA (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485(7399):517–521

    PubMed Central  PubMed  Google Scholar 

  53. Wallraff A, Kohling R, Heinemann U, Theis M, Willecke K, Steinhauser C (2006) The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci 26(20):5438–5447

    CAS  PubMed  Google Scholar 

  54. Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129(4):1045–1056

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Neusch C, Weishaupt JH, Bahr M (2003) Kir channels in the CNS: emerging new roles and implications for neurological diseases. Cell Tissue Res 311(2):131–138

    CAS  PubMed  Google Scholar 

  56. Neusch C, Rozengurt N, Jacobs RE, Lester HA, Kofuji P (2001) Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination. J Neurosci 21(15):5429–5438

    CAS  PubMed  Google Scholar 

  57. Kalsi AS, Greenwood K, Wilkin G, Butt AM (2004) Kir4.1 expression by astrocytes and oligodendrocytes in CNS white matter: a developmental study in the rat optic nerve. J Anat 204(6):475–485

    PubMed Central  PubMed  Google Scholar 

  58. Menichella DM, Majdan M, Awatramani R, Goodenough DA, Sirkowski E, Scherer SS, Paul DL (2006) Genetic and physiological evidence that oligodendrocyte gap junctions contribute to spatial buffering of potassium released during neuronal activity. J Neurosci 26(43):10984–10991

    CAS  PubMed  Google Scholar 

  59. Kettenmann H, Ransom BR (1988) Electrical coupling between astrocytes and between oligodendrocytes studied in mammalian cell cultures. Glia 1(1):64–73

    CAS  PubMed  Google Scholar 

  60. Odermatt B, Wellershaus K, Wallraff A, Seifert G, Degen J, Euwens C, Fuss B, Bussow H, Schilling K, Steinhauser C, Willecke K (2003) Connexin 47 (Cx47)-deficient mice with enhanced green fluorescent protein reporter gene reveal predominant oligodendrocytic expression of Cx47 and display vacuolized myelin in the CNS. J Neurosci 23(11):4549–4559

    CAS  PubMed  Google Scholar 

  61. Sargiannidou I, Vavlitou N, Aristodemou S, Hadjisavvas A, Kyriacou K, Scherer SS, Kleopa KA (2009) Connexin32 mutations cause loss of function in Schwann cells and oligodendrocytes leading to PNS and CNS myelination defects. J Neurosci 29(15):4736–4749

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Kleopa KA (2011) The role of gap junctions in Charcot-Marie-Tooth disease. J Neurosci 31(49):17753–17760

    CAS  PubMed  Google Scholar 

  63. Maglione M, Tress O, Haas B, Karram K, Trotter J, Willecke K, Kettenmann H (2010) Oligodendrocytes in mouse corpus callosum are coupled via gap junction channels formed by connexin47 and connexin32. Glia 58(9):1104–1117

    PubMed  Google Scholar 

  64. De Bock M, Kerrebrouck M, Wang N, Leybaert L (2013) Neurological manifestations of oculodentodigital dysplasia: a Cx43 channelopathy of the central nervous system? Front Pharmacol 4:120. doi:10.3389/fphar.2013.00120

    PubMed Central  PubMed  Google Scholar 

  65. Nakase T, Sohl G, Theis M, Willecke K, Naus CC (2004) Increased apoptosis and inflammation after focal brain ischemia in mice lacking connexin43 in astrocytes. Am J Pathol 164(6):2067–2075

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Dere E, De Souza-Silva MA, Frisch C, Teubner B, Sohl G, Willecke K, Huston JP (2003) Connexin30-deficient mice show increased emotionality and decreased rearing activity in the open-field along with neurochemical changes. Eur J Neurosci 18(3):629–638

    CAS  PubMed  Google Scholar 

  67. Lutz SE, Zhao Y, Gulinello M, Lee SC, Raine CS, Brosnan CF (2009) Deletion of astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and hippocampal CA1 vacuolation. J Neurosci 29(24):7743–7752

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Yang Y, Lewis R, Miller RH (2011) Interactions between oligodendrocyte precursors control the onset of CNS myelination. Dev Biol 350(1):127–138

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Iacobas DA, Iacobas S, Urban-Maldonado M, Spray DC (2005) Sensitivity of the brain transcriptome to connexin ablation. Biochim Biophys Acta 1711(2):183–196

    CAS  PubMed  Google Scholar 

  70. Nicchia GP, Srinivas M, Li W, Brosnan CF, Frigeri A, Spray DC (2005) New possible roles for aquaporin-4 in astrocytes: cell cytoskeleton and functional relationship with connexin43. FASEB J 19(12):1674–1676

    CAS  PubMed  Google Scholar 

  71. Duval N, Gomes D, Calaora V, Calabrese A, Meda P, Bruzzone R (2002) Cell coupling and Cx43 expression in embryonic mouse neural progenitor cells. J Cell Sci 115(Pt 16):3241–3251

    CAS  PubMed  Google Scholar 

  72. Kwak BR, Hermans MM, De Jonge HR, Lohmann SM, Jongsma HJ, Chanson M (1995) Differential regulation of distinct types of gap junction channels by similar phosphorylating conditions. Mol Biol Cell 6(12):1707–1719

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Warn-Cramer BJ, Cottrell GT, Burt JM, Lau AF (1998) Regulation of connexin-43 gap junctional intercellular communication by mitogen-activated protein kinase. J Biol Chem 273(15):9188–9196

    CAS  PubMed  Google Scholar 

  74. Marquez-Rosado L, Solan JL, Dunn CA, Norris RP, Lampe PD (2012) Connexin43 phosphorylation in brain, cardiac, endothelial and epithelial tissues. Biochim Biophys Acta 1818(8):1985–1992

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Scemes E, Duval N, Meda P (2003) Reduced expression of P2Y1 receptors in connexin43-null mice alters calcium signaling and migration of neural progenitor cells. J Neurosci 23(36):11444–11452

    CAS  PubMed Central  PubMed  Google Scholar 

  76. May D, Tress O, Seifert G, Willecke K (2013) Connexin47 protein phosphorylation and stability in oligodendrocytes depend on expression of Connexin43 protein in astrocytes. J Neurosci 33(18):7985–7996

    CAS  PubMed  Google Scholar 

  77. Magnotti LM, Goodenough DA, Paul DL (2011) Deletion of oligodendrocyte Cx32 and astrocyte Cx43 causes white matter vacuolation, astrocyte loss and early mortality. Glia 59(7):1064–1074

    PubMed Central  PubMed  Google Scholar 

  78. Rash JE (2010) Molecular disruptions of the panglial syncytium block potassium siphoning and axonal saltatory conduction: pertinence to neuromyelitis optica and other demyelinating diseases of the central nervous system. Neuroscience 168(4):982–1008

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Gankam Kengne F, Nicaise C, Soupart A, Boom A, Schiettecatte J, Pochet R, Brion JP, Decaux G (2011) Astrocytes are an early target in osmotic demyelination syndrome. J Am Soc Nephrol 22(10):1834–1845

    PubMed Central  PubMed  Google Scholar 

  80. Sharma R, Fischer MT, Bauer J, Felts PA, Smith KJ, Misu T, Fujihara K, Bradl M, Lassmann H (2010) Inflammation induced by innate immunity in the central nervous system leads to primary astrocyte dysfunction followed by demyelination. Acta Neuropathol 120(2):223–236

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Zhang F, Yao SY, Whetsell WO Jr, Sriram S (2013) Astrogliopathy and oligodendrogliopathy are early events in CNS demyelination. Glia 61(8):1261–1273

    PubMed  Google Scholar 

  82. Markoullis K, Sargiannidou I, Schiza N, Hadjisavvas A, Roncaroli F, Reynolds R, Kleopa KA (2012) Gap junction pathology in multiple sclerosis lesions and normal-appearing white matter. Acta Neuropathol 123(6):873–886

    CAS  PubMed  Google Scholar 

  83. Genoud S, Lappe-Siefke C, Goebbels S, Radtke F, Aguet M, Scherer SS, Suter U, Nave KA, Mantei N (2002) Notch1 control of oligodendrocyte differentiation in the spinal cord. J Cell Biol 158(4):709–718

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Mekki-Dauriac S, Agius E, Kan P, Cochard P (2002) Bone morphogenetic proteins negatively control oligodendrocyte precursor specification in the chick spinal cord. Development 129(22):5117–5130

    CAS  PubMed  Google Scholar 

  85. Fancy SP, Baranzini SE, Zhao C, Yuk DI, Irvine KA, Kaing S, Sanai N, Franklin RJ, Rowitch DH (2009) Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 23(13):1571–1585

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Liu R, Cai J, Hu X, Tan M, Qi Y, German M, Rubenstein J, Sander M, Qiu M (2003) Region-specific and stage-dependent regulation of Olig gene expression and oligodendrogenesis by Nkx6.1 homeodomain transcription factor. Development 130(25):6221–6231

    CAS  PubMed  Google Scholar 

  87. Lu QR, Sun T, Zhu Z, Ma N, Garcia M, Stiles CD, Rowitch DH (2002) Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109(1):75–86

    CAS  PubMed  Google Scholar 

  88. Xin M, Yue T, Ma Z, Wu FF, Gow A, Lu QR (2005) Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. J Neurosci 25(6):1354–1365

    CAS  PubMed  Google Scholar 

  89. Takebayashi H, Nabeshima Y, Yoshida S, Chisaka O, Ikenaka K (2002) The basic helix-loop-helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr Biol 12(13):1157–1163

    CAS  PubMed  Google Scholar 

  90. Mei F, Wang H, Liu S, Niu J, Wang L, He Y, Etxeberria A, Chan JR, Xiao L (2013) Stage-specific deletion of olig2 conveys opposing functions on differentiation and maturation of oligodendrocytes. J Neurosci 33(19):8454–8462

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Niu J, Mei F, Wang L, Liu S, Tian Y, Mo W, Li H, Lu QR, Xiao L (2012) Phosphorylated olig1 localizes to the cytosol of oligodendrocytes and promotes membrane expansion and maturation. Glia 60(9):1427–1436

    PubMed Central  PubMed  Google Scholar 

  92. Scemes E, Giaume C (2006) Astrocyte calcium waves: what they are and what they do. Glia 54(7):716–725

    PubMed Central  PubMed  Google Scholar 

  93. Parys B, Cote A, Gallo V, De Koninck P, Sik A (2010) Intercellular calcium signaling between astrocytes and oligodendrocytes via gap junctions in culture. Neuroscience 167(4):1032–1043

    CAS  PubMed  Google Scholar 

  94. Valiunas V, Polosina YY, Miller H, Potapova IA, Valiuniene L, Doronin S, Mathias RT, Robinson RB, Rosen MR, Cohen IS, Brink PR (2005) Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions. J Physiol 568(Pt 2):459–468

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Fancy SP, Zhao C, Franklin RJ (2004) Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Mol Cell Neurosci 27(3):247–254

    CAS  PubMed  Google Scholar 

  96. Dimou L, Simon C, Kirchhoff F, Takebayashi H, Gotz M (2008) Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci 28(41):10434–10442

    CAS  PubMed  Google Scholar 

  97. Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269

    CAS  PubMed  Google Scholar 

  98. Tang DG, Tokumoto YM, Raff MC (2000) Long-term culture of purified postnatal oligodendrocyte precursor cells. Evidence for an intrinsic maturation program that plays out over months. J Cell Biol 148(5):971–984

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Woodruff RH, Fruttiger M, Richardson WD, Franklin RJ (2004) Platelet-derived growth factor regulates oligodendrocyte progenitor numbers in adult CNS and their response following CNS demyelination. Mol Cell Neurosci 25(2):252–262

    CAS  PubMed  Google Scholar 

  100. Kuhlmann T, Miron V, Cui Q, Wegner C, Antel J, Bruck W (2008) Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131(Pt 7):1749–1758

    CAS  PubMed  Google Scholar 

  101. Zawadzka M, Rivers LE, Fancy SP, Zhao C, Tripathi R, Jamen F, Young K, Goncharevich A, Pohl H, Rizzi M, Rowitch DH, Kessaris N, Suter U, Richardson WD, Franklin RJ (2010) CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6(6):578–590

    CAS  PubMed  Google Scholar 

  102. Rhodes KE, Raivich G, Fawcett JW (2006) The injury response of oligodendrocyte precursor cells is induced by platelets, macrophages and inflammation-associated cytokines. Neuroscience 140(1):87–100

    CAS  PubMed  Google Scholar 

  103. Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JP (2001) TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci 4(11):1116–1122

    CAS  PubMed  Google Scholar 

  104. Stidworthy MF, Genoud S, Li WW, Leone DP, Mantei N, Suter U, Franklin RJ (2004) Notch1 and Jagged1 are expressed after CNS demyelination, but are not a major rate-determining factor during remyelination. Brain 127(Pt 9):1928–1941

    PubMed  Google Scholar 

  105. Blakemore WF, Gilson JM, Crang AJ (2003) The presence of astrocytes in areas of demyelination influences remyelination following transplantation of oligodendrocyte progenitors. Exp Neurol 184(2):955–963

    PubMed  Google Scholar 

  106. Roscoe WA, Messersmith E, Meyer-Franke A, Wipke B, Karlik SJ (2007) Connexin 43 gap junction proteins are up-regulated in remyelinating spinal cord. J Neurosci Res 85(5):945–953

    CAS  PubMed  Google Scholar 

  107. Markoullis K, Sargiannidou I, Gardner C, Hadjisavvas A, Reynolds R, Kleopa KA (2012) Disruption of oligodendrocyte gap junctions in experimental autoimmune encephalomyelitis. Glia 60(7):1053–1066

    PubMed  Google Scholar 

  108. Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11(2):87–99

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is in partly supported by the National Natural Science Foundation of China (NSCF31171046), China-France Joint Program YUANPEI 2013 PROJET (No. 26038XE). The authors wish to thank Jia Lou for her assistance in preparing the figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Giaume, C. & Xiao, L. Connexins-Mediated Glia Networking Impacts Myelination and Remyelination in the Central Nervous System. Mol Neurobiol 49, 1460–1471 (2014). https://doi.org/10.1007/s12035-013-8625-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8625-1

Keywords

Navigation