Skip to main content
Log in

Remarkable Activation of the Complement System and Aberrant Neuronal Localization of the Membrane Attack Complex in the Brain Tissues of Scrapie-Infected Rodents

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

As an integral part of the innate immunity, the complement system has been reported to involve in the pathogenesis of prion diseases (PrD). However, the states of expression and activity of complement proteins in experimental models of scrapie infection are still not fully understood. Herein, the state of complement activation, the presence, and distribution as well as localization of C3 and membrane attack complex (MAC) in the brains of several scrapie-infected rodents were comparatively assessed through various methodologies. Our data illustrated a significant increase in the total complement activity (CH50, U/ml) in several scrapie-infected rodent brains at the terminal stage and a time-dependent upregulation of C1q in 263K-infected hamsters during the incubation period, intimating the sustained and progressive activation of the classical pathway during PrD progression. Confocal microscopy revealed robust activation of C3 and its localization to various central nervous system (CNS) cells with differential morphology in the brain tissues of both 263K-infected hamsters and 139A-infected C57BL/6 mice at disease end stages. Dynamic analyses of MAC in the brains of 263K-infected hamsters and 139A-infected C57BL/6 mice demonstrated remarkably time-dependent deposition during the incubation period, which may highlight a persistently activated terminal complement components. Moreover, immunofluorescent assays (IFAs) showed that MAC-specific signals appeared to overlap with morphologically abnormal neurons rather than proliferative astrocytes or activated microglia throughout the CNS of both 263K-infected hamsters and 139A-infected C57BL/6 mice. Overall, these results indicate that the activation of the complement system and the subsequent localization of the complement components to neurons may be a hallmark during prion infection, which ultimately contribute to the neurodegeneration in PrD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216(4542):136–144

    Article  CAS  PubMed  Google Scholar 

  2. Collinge J, Palmer MS (1994) Prion diseases. In: Levy R (ed) Burns A. Dementia, Springer US, pp 835–853

    Google Scholar 

  3. Brown K, Mastrianni JA (2010) The prion diseases. J Geriatr Psychiatry Neurol 23(4):277–298

    Article  PubMed  Google Scholar 

  4. Wadsworth JDF, Collinge J (2010) Molecular pathology of human prion disease. Acta Neuropathol 121(1):69–77

    Article  PubMed  PubMed Central  Google Scholar 

  5. Morley BJ, Walport MJ (2000) 2—the complement system. In: Morley BJ, Walport MJ (eds) The complement FactsBook. Academic, London, pp 7–22

    Chapter  Google Scholar 

  6. Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11(9):785–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liszewski MK, Farries TC, Lublin DM, Rooney IA, Atkinson JP (1996) Control of the complement system. Adv Immunol 61:201–283

    Article  CAS  PubMed  Google Scholar 

  8. Walport MJ (2001) Complement first of two parts. N Engl J Med 344(14):1058–1066

    Article  CAS  PubMed  Google Scholar 

  9. Walport MJ (2001) Complement second of two parts. N Engl J Med 344:1140–1144

    Article  CAS  PubMed  Google Scholar 

  10. Janeway CA, Travers P, Walport M, Capra JD (2001) Immunobiology: the immune system in health and disease, vol 2. Livingstone, Churchill

    Google Scholar 

  11. Shin ML, Rus HG, Niculescu FI (1996) Membrane attack by complement: assembly and biology of terminal complement complexes. Biomembranes 4:123

    CAS  Google Scholar 

  12. Papadimitriou JC, Ramm LE, Drachenberg CB, Trump BF, Shin ML (1991) Quantitative analysis of adenine nucleotides during the prelytic phase of cell death mediated by C5b-9. J Immunol 147:212–217

    CAS  PubMed  Google Scholar 

  13. Triantafilou K, Hughes TR, Triantafilou M, Morgan BP (2013) The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J Cell Sci 126(Pt 13):2903–2913

    Article  CAS  PubMed  Google Scholar 

  14. Huber-Lang M, Sarma JV, Zetoune FS, Rittirsch D, Neff TA, McGuire SR, Lambris JD, Warner RL, Flierl MA, Hoesel LM, Gebhard F, Younger JG, Drouin SM, Wetsel RA, Ward PA (2006) Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med 12(6):682–687

    Article  CAS  PubMed  Google Scholar 

  15. Zhou J, Fonseca MI, Pisalyaput K, Tenner AJ (2008) Complement C3 and C4 expression in C1q sufficient and deficient mouse models of Alzheimer’s disease. J Neurochem 106(5):2080–2092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ishii T, Haga S, Yagishita S, Tateishi J (1984) The presence of complements in amyloid plaques of Creutzfeldt-Jakob disease and Gerstmann-Straussler-Scheinker disease. Appl Pathol 2(6):370–379

    CAS  PubMed  Google Scholar 

  17. Klein MA, Kaeser PS, Schwarz P, Weyd H, Xenarios I, Zinkernagel RM, Carroll MC, Verbeek JS, Botto M, Walport MJ, Molina H, Kalinke U, Acha-Orbea H, Aguzzi A (2001) Complement facilitates early prion pathogenesis. Nat Med 7(4):488–492

    Article  CAS  PubMed  Google Scholar 

  18. Michel B, Ferguson A, Johnson T, Bender H, Meyerett-Reid C, Wyckoff AC, Pulford B, Telling GC, Zabel MD (2013) Complement protein C3 exacerbates prion disease in a mouse model of chronic wasting disease. Int Immunol 25(12):697–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zabel MD, Heikenwalder M, Prinz M, Arrighi I, Schwarz P, Kranich J, von Teichman A, Haas KM, Zeller N, Tedder TF, Weis JH, Aguzzi A (2007) Stromal complement receptor CD21/35 facilitates lymphoid prion colonization and pathogenesis. J Immunol 179(9):6144–6152

    Article  CAS  PubMed  Google Scholar 

  20. Michel B, Ferguson A, Johnson T, Bender H, Meyerett-Reid C, Pulford B, von Teichman A, Seelig D, Weis JH, Telling GC, Aguzzi A, Zabel MD (2012) Genetic depletion of complement receptors CD21/35 prevents terminal prion disease in a mouse model of chronic wasting disease. J Immunol 189(9):4520–4527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kovacs GG, Gasque P, Ströbel T, Lindeck-Pozza E, Strohschneider M, Ironside JW, Budka H, Guentchev M (2004) Complement activation in human prion disease. Neurobiol Dis 15(1):21–28

    Article  CAS  PubMed  Google Scholar 

  22. Meade-White KD, Barbian KD, Race B, Favara C, Gardner D, Taubner L, Porcella S, Race R (2009) Characteristics of 263 K scrapie agent in multiple hamster species. Emerg Infect Dis 15(2):207–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shi Q, Zhang B-Y, Gao C, Zhang J, Jiang H-Y, Chen C, Han J, Dong X-P (2012) Mouse-adapted scrapie strains 139A and ME7 overcome species barrier to induce experimental scrapie in hamsters and changed their pathogenic features. Virol J 9(1):63

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kim YS, Carp RI, Callahan SM, Wisniewski HM (1987) Incubation periods and survival times for mice injected stereotaxically with three scrapie strains in different brain regions. J Gen Virol 68:695–702

    Article  PubMed  Google Scholar 

  25. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178

    Article  CAS  PubMed  Google Scholar 

  26. Webster S, Lue LF, Brachova L, Tenner AJ, McGeer PL, Terai K, Walker DG, Bradt B, Cooper NR, Rogers J (1997) Molecular and cellular characterization of the membrane attack complex, C5b-9, in Alzheimer’s disease. Neurobiol Aging 18(4):415–421

    Article  CAS  PubMed  Google Scholar 

  27. Yasuhara O, Aimi Y, McGeer EG, McGeer PL (1994) Expression of the complement membrane attack complex and its inhibitors in Pick disease brain. Brain Res 652(2):346–349

    Article  CAS  PubMed  Google Scholar 

  28. Ramaglia V, King RH, Nourallah M, Wolterman R, de Jonge R, Ramkema M, Vigar MA, van der Wetering S, Morgan BP, Troost D, Baas F (2007) The membrane attack complex of the complement system is essential for rapid Wallerian degeneration. J Neurosci Off J Soc Neurosci 27(29):7663–7672

    Article  CAS  Google Scholar 

  29. Farkas I, Baranyi L, Ishikawa Y, Okada N, Bohata C, Budai D, Fukuda A, Imai M, Okada H (2002) CD59 blocks not only the insertion of C9 into MAC but inhibits ion channel formation by homologous C5b-8 as well as C5b-9. J Physiol 539(Pt 2):537–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rus HG, Niculescu FI, Shin ML (2001) Role of the C5b-9 complement complex in cell cycle and apoptosis. Immunol Rev 180:49–55

    Article  CAS  PubMed  Google Scholar 

  31. Fosbrink M, Niculescu F, Rus H (2005) The role of c5b-9 terminal complement complex in activation of the cell cycle and transcription. Immunol Res 31(1):37–46

    Article  CAS  PubMed  Google Scholar 

  32. Tegla CA, Cudrici C, Patel S, Trippe R, Rus V, Niculescu F, Rus H (2011) Membrane attack by complement: the assembly and biology of terminal complement complexes. Immunol Res 51(1):45–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Soane L, Cho HJ, Niculescu F, Rus H, Shin ML (2001) C5b-9 terminal complement complex protects oligodendrocytes from death by regulating Bad through phosphatidylinositol 3-kinase/Akt pathway. J Immunol 167(4):2305–2311

    Article  CAS  PubMed  Google Scholar 

  34. Ren G, Huynh C, Bijian K, Cybulsky AV (2008) Role of apoptosis signal-regulating kinase 1 in complement-mediated glomerular epithelial cell injury. Mol Immunol 45(8):2236–2246

    Article  CAS  PubMed  Google Scholar 

  35. Huynh C, Ren G, Papillon J, Guillemette J, Takano T, Cybulsky AV (2009) The cytoprotective role of Ras in complement-mediated glomerular epithelial cell injury. Clin Immunol 131(2):343–353

    Article  CAS  PubMed  Google Scholar 

  36. Kissel JT, Mendell JR, Rammohan KW (1986) Microvascular deposition of complement membrane attack complex in dermatomyositis. N Engl J Med 314(6):329–334

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Chinese National Natural Science Foundation Grants (81301429, 81401670), China Mega-Project for Infectious Disease (2011ZX10004-101, 2012ZX10004215), SKLID Development Grant (2012SKLID102, 2011SKLID211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ping Dong.

Additional information

Yan Lv and Cao Chen contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

Serially optical scanning of the individual graphs of C5b-9, NeuN, DAPI and merged ones in the brain slices (cortex region) per 1.0 μm by confocal microscopy. A. 263K-infected hamster (×100). B. normal hamster (×100). C. 139A-infected mouse (×100). D. normal mouse (×100). Arrow points out that the images are captured from the bottom to the top. (PDF 973 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Chen, C., Zhang, BY. et al. Remarkable Activation of the Complement System and Aberrant Neuronal Localization of the Membrane Attack Complex in the Brain Tissues of Scrapie-Infected Rodents. Mol Neurobiol 52, 1165–1179 (2015). https://doi.org/10.1007/s12035-014-8915-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8915-2

Keywords

Navigation