Skip to main content
Log in

ASIC3 Is Required for Development of Fatigue-Induced Hyperalgesia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

An acute bout of exercise can exacerbate pain, hindering participation in regular exercise and daily activities. The mechanisms underlying pain in response to acute exercise are poorly understood. We hypothesized that proton accumulation during muscle fatigue activates acid-sensing ion channel 3 (ASIC3) on muscle nociceptors to produce hyperalgesia. We investigated the role of ASIC3 using genetic and pharmacological approaches in a model of fatigue-enhanced hyperalgesia. This model uses two injections of pH 5.0 saline into muscle in combination with an electrically induced fatigue of the same muscle just prior to the second injection of acid to induce mechanical hyperalgesia. We show a significant decrease in muscle force and decrease in muscle pH after 6 min of electrical stimulation. Genetic deletion of ASIC3 using knockout mice and pharmacological blockade of ASIC3 with APETx2 in muscle prevents the fatigue-enhanced hyperalgesia. However, ASIC3−/− mice and APETx2 have no effect on the fatigue response. Genetic deletion of ASIC3 in primary afferents innervating muscle using an HSV-1 expressing microRNA (miRNA) to ASIC3 surprisingly had no effect on the development of the hyperalgesia. Muscle fatigue increased the number of macrophages in muscle, and removal of macrophages from muscle with clodronate liposomes prevented the development of fatigue-enhanced hyperalgesia. Thus, these data suggest that fatigue reduces pH in muscle that subsequently activates ASIC3 on macrophages to enhance hyperalgesia to muscle insult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Macedo LG, Bostick GP, Maher CG (2013) Exercise for prevention of recurrences of nonspecific low back pain. Phys Ther 93:1587–1591. doi:10.2522/ptj.20120464

    Article  PubMed  Google Scholar 

  2. Clauw DJ (2014) Fibromyalgia: a clinical review. In: JAMA. pp 1547–1555

  3. Kosek E, Kosek E, Ekholm J et al (1996) Modulation of pressure pain thresholds during and following isometric contraction in patients with fibromyalgia and in healthy controls. Pain 64:415–423

    Article  PubMed  CAS  Google Scholar 

  4. Vlaeyen JWS, Linton SJ (2000) Fear-avoidance and its consequences in chronic musculoskeletal pain: a state of the art. Pain 85:317–332. doi:10.1016/S0304-3959(99)00242-0

    Article  PubMed  CAS  Google Scholar 

  5. Staud R (2007) Treatment of fibromyalgia and its symptoms. Expert Opin Pharmacother 8:1629–1642. doi:10.1517/14656566.8.11.1629

    Article  PubMed  CAS  Google Scholar 

  6. Light AR, Light AR, White AT et al (2009) Moderate exercise increases expression for sensory, adrenergic, and immune genes in chronic fatigue syndrome patients but not in normal subjects. J Pain 10:1099–1112. doi:10.1016/j.jpain.2009.06.003

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Lin C-WC, Haas M, Maher CG et al (2011) Cost-effectiveness of guideline-endorsed treatments for low back pain: a systematic review. Eur Spine J 20:1024–1038. doi:10.1007/s00586-010-1676-3

    Article  PubMed Central  PubMed  Google Scholar 

  8. McLoughlin MJ, Stegner AJ, Cook DB (2011) The relationship between physical activity and brain responses to pain in fibromyalgia. J Pain 12:640–651. doi:10.1016/j.jpain.2010.12.004

    Article  PubMed Central  PubMed  Google Scholar 

  9. Staud R, Robinson ME, Price DD (2005) Isometric exercise has opposite effects on central pain mechanisms in fibromyalgia patients compared to normal controls. Pain 118:176–184. doi:10.1016/j.pain.2005.08.007

    Article  PubMed  Google Scholar 

  10. Ge H-Y, Ge H-Y, Arendt-Nielsen L, Arendt-Nielsen L (2011) Latent myofascial trigger points. Curr Pain Headache Rep. doi:10.1007/s11916-011-0210-6

    PubMed  Google Scholar 

  11. Yokoyama T, Yokoyama T, Lisi TL et al (2007) Muscle fatigue increases the probability of developing hyperalgesia in mice. J Pain 8:692–699. doi:10.1016/j.jpain.2007.05.008

    Article  PubMed Central  PubMed  Google Scholar 

  12. Sluka KA, Sluka KA, Rasmussen LA, Rasmussen LA (2010) Fatiguing exercise enhances hyperalgesia to muscle inflammation. Pain 148:188–197. doi:10.1016/j.pain.2009.07.001

    Article  PubMed Central  PubMed  Google Scholar 

  13. Gregory NS, Gibson-Corley K, Frey-Law L, Sluka KA (2013) Fatigue-enhanced hyperalgesia in response to muscle insult: induction and development occur in a sex-dependent manner. Pain 154:2668–2676. doi:10.1016/j.pain.2013.07.047

    Article  PubMed Central  PubMed  Google Scholar 

  14. Da Silva LF, Da Silva LF, DeSantana JM et al (2010) Activation of NMDA receptors in the brainstem, rostral ventromedial medulla, and nucleus reticularis gigantocellularis mediates mechanical hyperalgesia produced by repeated intramuscular injections of acidic saline in rats. J Pain 11:378–387. doi:10.1016/j.jpain.2009.08.006

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Sluka KA, Sluka KA, Danielson J et al (2012) Exercise-induced pain requires NMDA receptor activation in the medullary raphe nuclei. Med Sci Sports Exerc 44:420–427. doi:10.1249/MSS.0b013e31822f490e

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Steen K, Steen K, Issbemer U et al (2003) Pain due to experimental acidosis in human skin: evidence for non-adapting nociceptor excitation. Neurosci Lett 1–4

  17. Frey Law LA, Frey Law LA, Sluka KA et al (2008) Acidic buffer induced muscle pain evokes referred pain and mechanical hyperalgesia in humans. Pain 140:254–264. doi:10.1016/j.pain.2008.08.014

    Article  PubMed  Google Scholar 

  18. Sluka KA, Sluka KA, Kalra A et al (2001) Unilateral intramuscular injections of acidic saline produce a bilateral, long-lasting hyperalgesia. Muscle Nerve 24:37–46

    Article  PubMed  CAS  Google Scholar 

  19. Immke DC, McCleskey EW (2001) Lactate enhances the acid-sensing Na+ channel on ischemia-sensing neurons. Nat Neurosci 4:869–870. doi:10.1038/nn0901-869

    Article  PubMed  CAS  Google Scholar 

  20. Light AR, Light AR, Hughen RW et al (2008) Dorsal root ganglion neurons innervating skeletal muscle respond to physiological combinations of protons, ATP, and lactate mediated by ASIC, P2X, and TRPV1. J Neurophysiol 100:1184–1201. doi:10.1152/jn.01344.2007

    Article  PubMed  CAS  Google Scholar 

  21. Sahlin K, Harris RC, Nylind B, Hultman E (1976) Lactate content and pH in muscle obtained after dynamic exercise. Pflugers Arch 367:143–149

    Article  PubMed  CAS  Google Scholar 

  22. Spriet LL, Söderlund K, Thomson JA, Hultman E (1986) pH measurement in human skeletal muscle samples: effect of phosphagen hydrolysis. J Appl Physiol 61:1949–1954

    PubMed  CAS  Google Scholar 

  23. Waldmann R, Waldmann R, Champigny G et al (1997) A proton-gated cation channel involved in acid-sensing. Nature 386:173–177. doi:10.1038/386173a0

    Article  PubMed  CAS  Google Scholar 

  24. Birdsong WT, Birdsong WT, Fierro L et al (2010) Sensing muscle ischemia: coincident detection of acid and ATP via interplay of two ion channels. Neuron 68:739–749. doi:10.1016/j.neuron.2010.09.029

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Gautam M, Benson CJ, Ranier JD et al (2012) ASICs do not play a role in maintaining hyperalgesia induced by repeated intramuscular acid injections. Pain Res Treat 2012:817347. doi:10.1155/2012/817347

    PubMed Central  PubMed  Google Scholar 

  26. Gautam M, Benson CJ (2013) Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits. FASEB J 27:793–802. doi:10.1096/fj.12-220400

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Sluka KA, Sluka KA, Price MP et al (2003) Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain 106:229–239

    Article  PubMed  CAS  Google Scholar 

  28. Sluka KA, Sluka KA, Radhakrishnan R et al (2007) ASIC3 in muscle mediates mechanical, but not heat, hyperalgesia associated with muscle inflammation. Pain 129:102–112. doi:10.1016/j.pain.2006.09.038

    Article  PubMed Central  PubMed  Google Scholar 

  29. Walder RY, Walder RY, Rasmussen LA et al (2010) ASIC1 and ASIC3 play different roles in the development of Hyperalgesia after inflammatory muscle injury. J Pain 11:210–218. doi:10.1016/j.jpain.2009.07.004

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Molliver DC, Molliver DC, Immke DC et al (2005) ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons. Mol Pain 1:35. doi:10.1186/1744-8069-1-35

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Price MP, McIlwrath SL, Xie J et al (2001) The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32:1071–1083

    Article  PubMed  CAS  Google Scholar 

  32. Wemmie JA, Chen J, Askwith CC et al (2002) The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34:463–477

    Article  PubMed  CAS  Google Scholar 

  33. Burke RE, Brennan TJ, Levine DN et al (1973) Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol Lond 234:723–748

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Enoka RM, Enoka RM, Rankin LL et al (1989) Fatigability of rat hindlimb muscle: associations between electromyogram and force during a fatigue test. J Physiol Lond 408:251–270

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Taguchi T, Taguchi T, Sato J et al (2005) Augmented mechanical response of muscle thin-fiber sensory receptors recorded from rat muscle-nerve preparations in vitro after eccentric contraction. J Neurophysiol 94:2822–2831. doi:10.1152/jn.00470.2005

    Article  PubMed  Google Scholar 

  36. Bennett RM (2007) Myofascial pain syndromes and their evaluation. Best Pract Res Clin Rheumatol 21:427–445. doi:10.1016/j.berh.2007.02.014

    Article  PubMed  Google Scholar 

  37. Skyba DA, Radhakrishnan R, Sluka KA (2005) Characterization of a method for measuring primary hyperalgesia of deep somatic tissue. J Pain 6:41–47. doi:10.1016/j.jpain.2004.10.002

    Article  PubMed  Google Scholar 

  38. Walder RY, Walder RY, Gautam M et al (2011) Selective targeting of ASIC3 using artificial miRNAs inhibits primary and secondary hyperalgesia after muscle inflammation. Pain 152:2348–2356. doi:10.1016/j.pain.2011.06.027

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Thompson RL, Cook ML, Devi-Rao GB et al (1986) Functional and molecular analyses of the avirulent wild-type herpes simplex virus type 1 strain KOS. J Virol 58:203–211

    PubMed Central  PubMed  CAS  Google Scholar 

  40. Sun N, Cassell MD, Perlman S (1996) Anterograde, transneuronal transport of herpes simplex virus type 1 strain H129 in the murine visual system. J Virol 70:5405–5413

    PubMed Central  PubMed  CAS  Google Scholar 

  41. van Rooijen N (1994) Liposome mediated modulation of macrophage functions. Adv Exp Med Biol 355:69–74

    Article  PubMed  CAS  Google Scholar 

  42. Tong J, Wu W-N, Kong X et al (2011) Acid-sensing ion channels contribute to the effect of acidosis on the function of dendritic cells. J Immunol 186:3686–3692. doi:10.4049/jimmunol.1001346

    Article  PubMed  CAS  Google Scholar 

  43. Kong X, Tang X, Du W et al (2013) Extracellular acidosis modulates the endocytosis and maturation of macrophages. Cell Immunol 281:44–50. doi:10.1016/j.cellimm.2012.12.009

    Article  PubMed  CAS  Google Scholar 

  44. Ikeuchi M, Ikeuchi M, Kolker SJ et al (2008) Role of ASIC3 in the primary and secondary hyperalgesia produced by joint inflammation in mice. Pain 137:662–669. doi:10.1016/j.pain.2008.01.020

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Yen Y-T, Tu P-H, Chen C-J et al (2009) Role of acid-sensing ion channel 3 in sub-acute-phase inflammation. Mo Pain 5:1. doi:10.1186/1744-8069-5-1

    Article  CAS  Google Scholar 

  46. Sluka KA, Rasmussen LA, Edgar MM et al (2013) Acid-sensing ion channel 3 deficiency increases inflammation but decreases pain behavior in murine arthritis. Arthritis Rheum 65:1194–1202. doi:10.1002/art.37862

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Chen W-N, Lee C-H, Lin S-H et al (2014) Roles of ASIC3, TRPV1, and NaV1.8 in the transition from acute to chronic pain in a mouse model of fibromyalgia. Mol pain 10:40. doi:10.1186/1744-8069-10-40

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Karczewski J, Karczewski J, Spencer RH et al (2010) Reversal of acid-induced and inflammatory pain by the selective ASIC3 inhibitor, APETx2. Br J Pharmacol 161:950–960. doi:10.1111/j.1476-5381.2010.00918.x

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Radhakrishnan R, Radhakrishnan R, Moore SA et al (2003) Unilateral carrageenan injection into muscle or joint induces chronic bilateral hyperalgesia in rats. Pain 104:567–577

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Deval E, Deval E, Noel J et al (2011) Acid-sensing ion channels in postoperative pain. J Neurosci 31:6059–6066. doi:10.1523/JNEUROSCI. 5266-10.2011

    Article  PubMed  CAS  Google Scholar 

  51. Jahr H, Jahr H, van Driel M et al (2005) Identification of acid-sensing ion channels in bone. Biochem Biophys Res Commun 337:349–354. doi:10.1016/j.bbrc.2005.09.054

    Article  PubMed  CAS  Google Scholar 

  52. Kolker SJ, Kolker SJ, Walder RY et al (2010) Acid-sensing ion channel 3 expressed in type B synoviocytes and chondrocytes modulates hyaluronan expression and release. Ann Rheum Dis 69:903–909. doi:10.1136/ard.2009.117168

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Gong W, Kolker SJ, Usachev Y et al (2014) Acid-sensing ion channel 3 decreases phosphorylation of extracellular signal-regulated kinases and induces synoviocyte cell death by increasing intracellular calcium. Arthritis Res Ther 16:R121. doi:10.1186/ar4577

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969. doi:10.1038/nri2448

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Dina OA, Dina OA, Levine JD et al (2011) Enhanced cytokine-induced mechanical hyperalgesia in skeletal muscle produced by a novel mechanism in rats exposed to unpredictable sound stress. Eur J Pain 15:796–800. doi:10.1016/j.ejpain.2011.02.005

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Binshtok AM, Wang H, Zimmermann K et al (2008) Nociceptors are interleukin-1beta sensors. J Neurosci 28:14062–14073. doi:10.1523/JNEUROSCI. 3795-08.2008

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Mogi C, Tobo M, Tomura H et al (2009) Involvement of proton-sensing TDAG8 in extracellular acidification-induced inhibition of proinflammatory cytokine production in peritoneal macrophages. J Immunol 182:3243–3251. doi:10.4049/jimmunol.0803466

    Article  PubMed  CAS  Google Scholar 

  58. Wang N, Gates KL, Trejo H et al (2010) Elevated CO2 selectively inhibits interleukin-6 and tumor necrosis factor expression and decreases phagocytosis in the macrophage. FASEB J 24:2178–2190. doi:10.1096/fj.09-136895

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Park S-Y, Bae D-J, Kim M-J et al (2012) Extracellular low pH modulates phosphatidylserine-dependent phagocytosis in macrophages by increasing stabilin-1 expression. J Biol Chem 287:11261–11271. doi:10.1074/jbc.M111.310953

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Zabel DD, Feng JJ, Scheuenstuhl H et al (1996) Lactate stimulation of macrophage-derived angiogenic activity is associated with inhibition of Poly(ADP-ribose) synthesis. Lab Invest 74:644–649

    PubMed  CAS  Google Scholar 

  61. Nareika A, He L, Game BA et al (2005) Sodium lactate increases LPS-stimulated MMP and cytokine expression in U937 histiocytes by enhancing AP-1 and NF-kappaB transcriptional activities. Am J Physiol Endocrinol Metab 289:E534–E542. doi:10.1152/ajpendo.00462.2004

    Article  PubMed  CAS  Google Scholar 

  62. Kent-Braun JA, Kent-Braun JA, Ng AV et al (2002) Human skeletal muscle responses vary with age and gender during fatigue due to incremental isometric exercise. J Appl Physiol 93:1813–1823. doi:10.1152/japplphysiol.00091.2002

    Article  PubMed  CAS  Google Scholar 

  63. Hunter SK (2014) Sex differences in human fatigability: mechanisms and insight to physiological responses. Acta Physiol (Oxf) 210:768–789. doi:10.1111/apha.12234

    Article  PubMed Central  CAS  Google Scholar 

  64. Simoneau JA, Bouchard C (1989) Human variation in skeletal muscle fiber-type proportion and enzyme activities. Am J Physiol 257:E567–E572

    PubMed  CAS  Google Scholar 

  65. Staron RS, Hagerman FC, Hikida RS et al (2000) Fiber type composition of the vastus lateralis muscle of young men and women. J Histochem Cytochem 48:623–629

    Article  PubMed  CAS  Google Scholar 

  66. Gollnick PD, Körge P, Karpakka J, Saltin B (1991) Elongation of skeletal muscle relaxation during exercise is linked to reduced calcium uptake by the sarcoplasmic reticulum in man. Acta Physiol Scand 142:135–136. doi:10.1111/j.1748-1716.1991.tb09139.x

    Article  PubMed  CAS  Google Scholar 

  67. Hunter SK, Thompson MW, Ruell PA et al (1999) Human skeletal sarcoplasmic reticulum Ca2+ uptake and muscle function with aging and strength training. J Appl Physiol 86:1858–1865

    PubMed  CAS  Google Scholar 

  68. Russ DW, Russ DW, Lanza IR et al (2005) Sex differences in glycolysis during brief, intense isometric contractions. Muscle Nerve 32:647–655. doi:10.1002/mus.20396

    Article  PubMed  CAS  Google Scholar 

  69. Tarnopolsky LJ, MacDougall JD, Atkinson SA et al (1990) Gender differences in substrate for endurance exercise. J Appl Physiol 68:302–308

    PubMed  CAS  Google Scholar 

  70. Roepstorff C, Steffensen CH, Madsen M et al (2002) Gender differences in substrate utilization during submaximal exercise in endurance-trained subjects. Am J Physiol Endocrinol Metab 282:E435–E447. doi:10.1152/ajpendo.00266.2001

    Article  PubMed  CAS  Google Scholar 

  71. Roepstorff C, Thiele M, Hillig T et al (2006) Higher skeletal muscle alpha2AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise. J Physiol Lond 574:125–138. doi:10.1113/jphysiol.2006.108720

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Esbjörnsson-Liljedahl M, Sundberg CJ, Norman B, Jansson E (1999) Metabolic response in type I and type II muscle fibers during a 30-s cycle sprint in men and women. J Appl Physiol 87:1326–1332

    PubMed  Google Scholar 

  73. Costill DL, Sharp RL, Fink WJ, Katz A (1982) Determination of human muscle pH in needle-biopsy specimens. J Appl Physiol Respir Environ Exerc Physiol 53:1310–1313

    PubMed  CAS  Google Scholar 

  74. Broch-Lips M, Overgaard K, Praetorius HA, Nielsen OB (2007) Effects of extracellular HCO3(−) on fatigue, pHi, and K+ efflux in rat skeletal muscles. J Appl Physiol 103:494–503. doi:10.1152/japplphysiol.00049.2007

    Article  PubMed  CAS  Google Scholar 

  75. Hermansen L, Osnes JB (1972) Blood and muscle pH after maximal exercise in man. J Appl Physiol 32:304–308

    PubMed  CAS  Google Scholar 

  76. Juel C, Klarskov C, Nielsen JJ et al (2004) Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. Am J Physiol Endocrinol Metab 286:E245–E251. doi:10.1152/ajpendo.00303.2003

    Article  PubMed  CAS  Google Scholar 

  77. Sherwood TW, Sherwood TW, Frey EN et al (2012) Structure and activity of the acid-sensing ion channels. Am J Physiol Cell Physiol 303:C699–C710. doi:10.1152/ajpcell.00188.2012

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Burnes LA, Burnes LA, Kolker SJ et al (2008) Enhanced muscle fatigue occurs in male but not female ASIC3−/− mice. Am J Physiol Regul Integr Comp Physiol 294:R1347–R1355. doi:10.1152/ajpregu.00687.2007

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. van Tulder MW, Malmivaara A, Esmail R, Koes BW (2000) Exercise therapy for low back pain. Cochrane Database Syst Rev CD000335. doi: 10.1002/14651858.CD000335

  80. Thompson JM (2012) Exercise in muscle pain disorders. PM R 4:889–893. doi:10.1016/j.pmrj.2012.08.004

    Article  PubMed  Google Scholar 

  81. Valkeinen H, Häkkinen A, Alen M et al (2008) Physical fitness in postmenopausal women with fibromyalgia. Int J Sports Med 29:408–413. doi:10.1055/s-2007-965818

    Article  PubMed  CAS  Google Scholar 

  82. Verbunt JA, Verbunt JA, Pernot DHFM et al (2008) Disability and quality of life in patients with fibromyalgia. Health Qual Life Outcomes 6:8. doi:10.1186/1477-7525-6-8

    Article  PubMed Central  PubMed  Google Scholar 

  83. Busch AJ, Barber KAR, Overend TJ, et al. (2007) Exercise for treating fibromyalgia syndrome. Cochrane Database Syst Rev CD003786. doi: 10.1002/14651858.CD003786.pub2

  84. Sluka KA, Sluka KA, O’Donnell JM et al (2013) Regular physical activity prevents development of chronic pain and activation of central neurons. J Appl Physiol 114:725–733. doi:10.1152/japplphysiol.01317.2012

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funded by the National Institute of Health grants AR061371 and AR053509. The authors wish to thank Dr. Roxanne Walder for advice on qPCR and Lynn Rasmussen and Jing Danielson for technical assistance.

Conflict of Interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen A. Sluka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gregory, N.S., Brito, R.G., Fusaro, M.C.G.O. et al. ASIC3 Is Required for Development of Fatigue-Induced Hyperalgesia. Mol Neurobiol 53, 1020–1030 (2016). https://doi.org/10.1007/s12035-014-9055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-9055-4

Keywords

Navigation