Skip to main content

Advertisement

Log in

Migration and Phagocytic Ability of Activated Microglia During Post-natal Development is Mediated by Calcium-Dependent Purinergic Signalling

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Microglia play an important role in synaptic pruning and controlled phagocytosis of neuronal cells during developmental stages. However, the mechanisms that regulate these functions are not completely understood. The present study was designed to investigate the role of purinergic signalling in microglial migration and phagocytic activity during post-natal brain development. One-day-old BALB/c mice received lipopolysaccharide (LPS) and/or a purinergic analogue (2-methylthioladenosine-5′-diphosphate; 2MeSADP), intracerebroventrically (i.c.v.). Combined administration of LPS and 2MeSADP resulted in activation of microglia as evident from increased expression of ionised calcium-binding adapter molecule 1 (Iba1). Activated microglia showed increased expression of purinergic receptors (P2Y2, P2Y6 and P2Y12). LPS either alone or in combination with 2MeSADP induced the expression of Na+/Ca2+ exchanger (NCX-1) and P/Q-type Ca2+ channels along with MARCKS-related protein (MRP), which is an integral component of cell migration machinery. In addition, LPS and 2MeSADP administration induced the expression of microglial CD11b and DAP12 (DNAX-activation protein 12), which are known to be involved in phagocytosis of neurons during development. Interestingly, administration of thapsigargin (TG), a specific Ca2+-ATPase inhibitor of endoplasmic reticulum, prevented the LPS/2MeSADP-induced microglial activation and migration by down-regulating the expression of Iba1 and MRP, respectively. Moreover, TG also reduced the LPS/2MeSADP-induced expression of CD11b/DAP12. Taken together, the findings reveal for the first time that Ca2+-mediated purinergic receptors regulate the migration and phagocytic ability of microglia during post-natal brain development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Prinz M, Mildner A (2011) Microglia in the CNS: immigrants from another world. Glia 59(2):177–187

    Article  PubMed  Google Scholar 

  2. Schlegelmilch T, Henke K, Peri F (2011) Microglia in the developing brain: from immunity to behaviour. Curr Opin Neurobiol 21(1):5–10

    Article  CAS  PubMed  Google Scholar 

  3. Inoue K (2002) Microglial activation by purines and pyrimidines. Glia 40(2):156–163

    Article  PubMed  Google Scholar 

  4. Sasaki Y, Hoshi M, Akazawa C, Nakamura Y, Tsuzuki H, Inoue K, Kohsaka S (2003) Selective expression of Gi/o-coupled ATP receptor P2Y12 in microglia in rat brain. Glia 44(3):242–250

    Article  PubMed  Google Scholar 

  5. Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K, Tsuda M, Joshi BV, Jacobson KA, Kohsaka S, Inoue K (2007) UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446(7139):1091–1095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758

    Article  CAS  PubMed  Google Scholar 

  7. Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9(12):1512–1519

    Article  CAS  PubMed  Google Scholar 

  8. Ohsawa K, Irino Y, Nakamura Y, Akazawa C, Inoue K, Kohsaka S (2007) Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis. Glia 55(6):604–616

    Article  PubMed  Google Scholar 

  9. Avignone E, Ulmann L, Levavasseur F, Rassendren F, Audinat E (2008) Status epilepticus induces a particular microglial activation state characterized by enhanced purinergic signaling. J Neurosci 28(37):9133–9144

    Article  CAS  PubMed  Google Scholar 

  10. Crain JM, Nikodemova M, Watters JJ (2009) Expression of P2 nucleotide receptors varies with age and sex in murine brain microglia. J Neuroinflammation 6:24

    Article  PubMed Central  PubMed  Google Scholar 

  11. Di Virgilio F, Ceruti S, Bramanti P, Abbracchio MP (2009) Purinergic signalling in inflammation of the central nervous system. Trends Neurosci 32(2):79–87

    Article  PubMed  Google Scholar 

  12. Ulmann L, Levavasseur F, Avignone E, Peyroutou R, Hirbec H, Audinat E, Rassendren F (2013) Involvement of P2X4 receptors in hippocampal microglial activation after status epilepticus. Glia 61(8):1306–1319

    Article  PubMed  Google Scholar 

  13. Naruse I, Keino H (1995) Apoptosis in the developing CNS. Prog Neurobiol 47(2):135–155

    Article  CAS  PubMed  Google Scholar 

  14. Hashimoto K, Kano M (2005) Postnatal development and synapse elimination of climbing fiber to Purkinje cell projection in the cerebellum. Neurosci Res 53(3):221–228

    Article  PubMed  Google Scholar 

  15. Smyth JT, Hwang SY, Tomita T, DeHaven WI, Mercer JC, Putney JW (2010) Activation and regulation of store-operated calcium entry. J Cell Mol Med 14(10):2337–2349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Moller T (2002) Calcium signaling in microglial cells. Glia 40(2):184–194

    Article  PubMed  Google Scholar 

  17. Farber K, Kettenmann H (2006) Functional role of calcium signals for microglial function. Glia 54(7):656–665

    Article  PubMed  Google Scholar 

  18. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394

    Article  CAS  PubMed  Google Scholar 

  19. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318

    Article  CAS  PubMed  Google Scholar 

  20. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553

    Article  CAS  PubMed  Google Scholar 

  21. Larsson C (2006) Protein kinase C and the regulation of the actin cytoskeleton. Cell Signal 18(3):276–284

    Article  CAS  PubMed  Google Scholar 

  22. Blackshear PJ (1993) The MARCKS family of cellular protein kinase C substrates. J Biol Chem 268(3):1501–1504

    CAS  PubMed  Google Scholar 

  23. Arbuzova A, Schmitz AA, Vergeres G (2002) Cross-talk unfolded: MARCKS proteins. Biochem J 362(Pt 1):1–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Li J, Zhu Z, Bao Z (1996) Role of MacMARCKS in integrin-dependent macrophage spreading and tyrosine phosphorylation of paxillin. J Biol Chem 271(22):12985–12990

    Article  CAS  PubMed  Google Scholar 

  25. Zhou X, Li J (2000) Macrophage-enriched myristoylated alanine-rich C kinase substrate and its phosphorylation is required for the phorbol ester-stimulated diffusion of beta 2 integrin molecules. J Biol Chem 275(26):20217–20222

    Article  CAS  PubMed  Google Scholar 

  26. Cunningham CL, Martinez-Cerdeno V, Noctor SC (2013) Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 33(10):4216–4233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Wakselman S, Bechade C, Roumier A, Bernard D, Triller A, Bessis A (2008) Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J Neurosci 28(32):8138–8143

    Article  CAS  PubMed  Google Scholar 

  28. Roumier A, Bechade C, Poncer JC, Smalla KH, Tomasello E, Vivier E, Gundelfinger ED, Triller A, Bessis A (2004) Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse. J Neurosci 24(50):11421–11428

    Article  CAS  PubMed  Google Scholar 

  29. Neumann H, Takahashi K (2007) Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. J Neuroimmunol 184(1–2):92–99

    Article  CAS  PubMed  Google Scholar 

  30. Glascock JJ, Osman EY, Coady TH, Rose FF, Shababi M, Lorson CL (2011) Delivery of therapeutic agents through intracerebroventricular (ICV) and intravenous (IV) injection in mice. J Vis Exp (56). doi:10.3791/2968

  31. Campbell LR, Pang Y, Ojeda NB, Zheng B, Rhodes PG, Alexander BT (2012) Intracerebral lipopolysaccharide induces neuroinflammatory change and augmented brain injury in growth-restricted neonatal rats. Pediatr Res 71(6):645–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Lambert C, Ase AR, Seguela P, Antel JP (2010) Distinct migratory and cytokine responses of human microglia and macrophages to ATP. Brain Behav Immun 24(8):1241–1248

    Article  CAS  PubMed  Google Scholar 

  33. Jan CR, Ho CM, Wu SN, Tseng CJ (1999) Mechanism of rise and decay of thapsigargin-evoked calcium signals in MDCK cells. Life Sci 64(4):259–267

    Article  CAS  PubMed  Google Scholar 

  34. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Towbin H, Staehelin T, Gordon J (1992) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Biotechnology 24:145–149

    CAS  PubMed  Google Scholar 

  36. Toescu EC, Moller T, Kettenmann H, Verkhratsky A (1998) Long-term activation of capacitative Ca2+ entry in mouse microglial cells. Neuroscience 86(3):925–935

    Article  CAS  PubMed  Google Scholar 

  37. Moller T, Kann O, Verkhratsky A, Kettenmann H (2000) Activation of mouse microglial cells affects P2 receptor signaling. Brain Res 853(1):49–59

    Article  CAS  PubMed  Google Scholar 

  38. Sunohara JR, Ridgway ND, Cook HW, Byers DM (2001) Regulation of MARCKS and MARCKS-related protein expression in BV-2 microglial cells in response to lipopolysaccharide. J Neurochem 78(3):664–672

    Article  CAS  PubMed  Google Scholar 

  39. Knuesel I, Elliott A, Chen HJ, Mansuy IM, Kennedy MB (2005) A role for synGAP in regulating neuronal apoptosis. Eur J Neurosci 21(3):611–621

    Article  PubMed  Google Scholar 

  40. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69

    Article  CAS  PubMed  Google Scholar 

  41. Pei Z, Pang H, Qian L, Yang S, Wang T, Zhang W, Wu X, Dallas S, Wilson B, Reece JM, Miller DS, Hong JS, Block ML (2007) MAC1 mediates LPS-induced production of superoxide by microglia: the role of pattern recognition receptors in dopaminergic neurotoxicity. Glia 55(13):1362–1373

    Article  PubMed  Google Scholar 

  42. Santos AM, Calvente R, Tassi M, Carrasco MC, Martin-Oliva D, Marin-Teva JL, Navascues J, Cuadros MA (2008) Embryonic and postnatal development of microglial cells in the mouse retina. J Comp Neurol 506(2):224–239

    Article  PubMed  Google Scholar 

  43. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32(1):19–29

    Article  CAS  PubMed  Google Scholar 

  44. Conde JR, Streit WJ (2006) Microglia in the aging brain. J Neuropathol Exp Neurol 65(3):199–203

    Article  PubMed  Google Scholar 

  45. Streit WJ, Miller KR, Lopes KO, Njie E (2008) Microglial degeneration in the aging brain—bad news for neurons? Front Biosci 13:3423–3438

    Article  CAS  PubMed  Google Scholar 

  46. Guo RW, Huang L (2008) New insights into the activation mechanism of store-operated calcium channels: roles of STIM and Orai. J Zhejiang Univ Sci B 9(8):591–601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Thastrup O (1990) Role of Ca2(+)-ATPases in regulation of cellular Ca2+ signalling, as studied with the selective microsomal Ca2(+)-ATPase inhibitor, thapsigargin. Agents Actions 29(1–2):8–15

    Article  CAS  PubMed  Google Scholar 

  48. Jan CR, Ho CM, Wu SN, Tseng CJ (1998) Mechanisms of rise and decay of ADP-evoked calcium signal in MDCK cells. Chin J Physiol 41(2):67–73

    CAS  PubMed  Google Scholar 

  49. Hoffmann A, Kann O, Ohlemeyer C, Hanisch UK, Kettenmann H (2003) Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): suppression of receptor-evoked calcium signaling and control of release function. J Neurosci 23(11):4410–4419

    CAS  PubMed  Google Scholar 

  50. Nagano T, Kawasaki Y, Baba A, Takemura M, Matsuda T (2004) Up-regulation of Na(+)-Ca2+ exchange activity by interferon-gamma in cultured rat microglia. J Neurochem 90(4):784–791

    Article  CAS  PubMed  Google Scholar 

  51. Bravo-Martínez J, Delgado-Coello B, Mas-Oliva J (2010) Cell calcium extrusion systems and their role in epileptogenesis. Open Neurosci J 4:1–12

    Article  Google Scholar 

  52. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19(8):312–318

    Article  CAS  PubMed  Google Scholar 

  53. Mocsai A, Abram CL, Jakus Z, Hu Y, Lanier LL, Lowell CA (2006) Integrin signaling in neutrophils and macrophages uses adaptors containing immunoreceptor tyrosine-based activation motifs. Nat Immunol 7(12):1326–1333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Takahashi K, Rochford CD, Neumann H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201(4):647–657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Dr. D.S. Kothari Postdoctoral fellowship from the University Grants Commission to A.S. [13-879/2013(BSR)], UGC-SAP and DST-PURSE grants, and Senior research fellowship from Indian Council of Medical Research to S.B. [67/11/2013-Immunology/BMS for].We thank Dr. A.S. Naura for providing primary antibodies, MRP (sc-161829) and DAP12 (sc-166085).

Conflict of Interest

Authors declare that they have no competing conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajat Sandhir.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Sites of I.C.V. injection in the ventricles. Pups were immobilized and cryo-anaesthetised for 1-2 min. A sterilized glass micropipette attached to a 5 μl Hamilton syringe through a long tube was used for injecting various drugs. The needle was inserted 2 mm deep at a location approximately 0.25 mm lateral to the sagittal suture, 0.50–0.75 mm rostral to the neonatal coronary suture. (GIF 7 kb)

High resolution image (TIFF 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunkaria, A., Bhardwaj, S., Halder, A. et al. Migration and Phagocytic Ability of Activated Microglia During Post-natal Development is Mediated by Calcium-Dependent Purinergic Signalling. Mol Neurobiol 53, 944–954 (2016). https://doi.org/10.1007/s12035-014-9064-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-9064-3

Keywords

Navigation