Skip to main content

Advertisement

Log in

Plasma miR-221/222 Family as Novel Descriptive and Prognostic Biomarkers for Glioma

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glioma, the most common type of primary central nervous system cancers, was progressive with poor survival. MicroRNA, as a novel biomarker, was suspected to be novel biomarkers for glioma diagnosis and prognosis. The study aimed at investigating the diagnostic and predictive value of miR-221/222 family for glioma. In the first phase, we compared plasma miR-221/222 family levels between 50 glioma patients and 51 healthy controls by real-time qRT-PCR amplification. Meanwhile, a meta-analysis based on published studies and presents study was performed to explore the diagnostic performance of miR-221/222 family in human cancers. In the second phase, we correlated the miR-221/222 family expression level with prognosis of glioma using Kaplan-Meier survival curves. The plasma miR-221/222 family levels were found to be significantly upregulated in glioma patients (P = 0.001). The ROC curve analysis yielded an AUC values of 0.84 (95 % confidence interval (CI): 0.74–0.93) for miR-221 and 0.92 (95 % CI 0.87–0.94) for miR-222. In the meta-analysis, the summary receiver operating characteristic (sROC) was plotted with an AUC of 0.82 (95 % CI 0.78–0.85) for miR-221/222 family. It was also demonstrated that high positive plasma miR-221 and miR-222 were both correlated with poor survival rate (miR-221: HR = 2.13; 95 % CI, 1.05–4.31; miR-222: HR = 2.09; 95 % CI, 1.00–4.37). This study demonstrated that the detection of the miRNA-221/222 family should be considered as a new additional tool to better characterize glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer J int du Cancer 127(12):2893–2917. doi:10.1002/ijc.25516

    Article  CAS  Google Scholar 

  2. Turner JD, Williamson R, Almefty KK, Nakaji P, Porter R, Tse V, Kalani MY (2010) The many roles of microRNAs in brain tumor biology. Neurosurg Focus 28(1):E3. doi:10.3171/2009.10.FOCUS09207

    Article  PubMed  Google Scholar 

  3. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109. doi:10.1007/s00401-007-0243-4

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro-Oncology 14(Suppl 5):v1–v49. doi:10.1093/neuonc/nos218

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507. doi:10.1056/NEJMra0708126

    Article  CAS  PubMed  Google Scholar 

  6. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466. doi:10.1016/S1470-2045(09)70025-7

    Article  CAS  PubMed  Google Scholar 

  7. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. doi:10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  8. Kuzniecky R, de la Sayette V, Ethier R, Melanson D, Andermann F, Berkovic S, Robitaille Y, Olivier A, Peters T, Feindel W (1987) Magnetic resonance imaging in temporal lobe epilepsy: pathological correlations. Ann Neurol 22(3):341–347. doi:10.1002/ana.410220310

    Article  CAS  PubMed  Google Scholar 

  9. Smith JS, Tachibana I, Passe SM, Huntley BK, Borell TJ, Iturria N, O’Fallon JR, Schaefer PL, Scheithauer BW, James CD, Buckner JC, Jenkins RB (2001) PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J Natl Cancer Inst 93(16):1246–1256

    Article  CAS  PubMed  Google Scholar 

  10. Wang SI, Puc J, Li J, Bruce JN, Cairns P, Sidransky D, Parsons R (1997) Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res 57(19):4183–4186

    CAS  PubMed  Google Scholar 

  11. Watanabe K, Tachibana O, Sata K, Yonekawa Y, Kleihues P, Ohgaki H (1996) Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol (Zurich, Switzerland) 6(3):217–223, discussion 223–214

    Article  CAS  Google Scholar 

  12. Duffield JS, Grafals M, Portilla D (2013) MicroRNAs are potential therapeutic targets in fibrosing kidney disease: lessons from animal models. Drug Discov Today Dis Model 10(3):e127–e135. doi:10.1016/j.ddmod.2012.08.004

    Article  Google Scholar 

  13. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  14. Cohen S (2010) MicroRNAs in animal development. Editorial. Semin Cell Dev Biol 21(7):727. doi:10.1016/j.semcdb.2010.07.004

    Article  PubMed  Google Scholar 

  15. Nana-Sinkam P, Croce CM (2010) MicroRNAs in diagnosis and prognosis in cancer: what does the future hold? Pharmacogenomics 11(5):667–669. doi:10.2217/pgs.10.57

    Article  CAS  PubMed  Google Scholar 

  16. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838. doi:10.1038/nature03702

    Article  CAS  PubMed  Google Scholar 

  17. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56(11):1733–1741. doi:10.1373/clinchem.2010.147405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafre SA, Farace MG (2007) miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chemist 282(32):23716–23724. doi:10.1074/jbc.M701805200

    Article  CAS  Google Scholar 

  19. Garofalo M, Quintavalle C, Romano G, Croce CM, Condorelli G (2012) miR221/222 in cancer: their role in tumor progression and response to therapy. Curr Mol Med 12(1):27–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Waters PS, McDermott AM, Wall D, Heneghan HM, Miller N, Newell J, Kerin MJ, Dwyer RM (2012) Relationship between circulating and tissue microRNAs in a murine model of breast cancer. PLoS One 7(11):e50459. doi:10.1371/journal.pone.0050459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mazeh H, Mizrahi I, Halle D, Ilyayev N, Stojadinovic A, Trink B, Mitrani-Rosenbaum S, Roistacher M, Ariel I, Eid A, Freund HR, Nissan A (2011) Development of a microRNA-based molecular assay for the detection of papillary thyroid carcinoma in aspiration biopsy samples. Thyroid Off J Am Thyroid Assoc 21(2):111–118. doi:10.1089/thy.2010.0356

    Article  CAS  Google Scholar 

  22. Hu Z, Dong J, Wang LE, Ma H, Liu J, Zhao Y, Tang J, Chen X, Dai J, Wei Q, Zhang C, Shen H (2012) Serum microRNA profiling and breast cancer risk: the use of miR-484/191 as endogenous controls. Carcinogenesis 33(4):828–834. doi:10.1093/carcin/bgs030

    Article  CAS  PubMed  Google Scholar 

  23. Gombos K, Horvath R, Szele E, Juhasz K, Gocze K, Somlai K, Pajkos G, Ember I, Olasz L (2013) miRNA expression profiles of oral squamous cell carcinomas. Anticancer Res 33(4):1511–1517

    CAS  PubMed  Google Scholar 

  24. Garofalo M, Di Leva G, Romano G, Nuovo G, Suh SS, Ngankeu A, Taccioli C, Pichiorri F, Alder H, Secchiero P, Gasparini P, Gonelli A, Costinean S, Acunzo M, Condorelli G, Croce CM (2009) miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 16(6):498–509. doi:10.1016/j.ccr.2009.10.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang C, Kang C, You Y, Pu P, Yang W, Zhao P, Wang G, Zhang A, Jia Z, Han L, Jiang H (2009) Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27kip1 in vitro and in vivo. Int J Oncol 34(6):1653–1660

    CAS  PubMed  Google Scholar 

  26. Zhang J, Han L, Ge Y, Zhou X, Zhang A, Zhang C, Zhong Y, You Y, Pu P, Kang C (2010) miR-221/222 promote malignant progression of glioma through activation of the Akt pathway. Int J Oncol 36(4):913–920

    CAS  PubMed  Google Scholar 

  27. Bush VJ, Janu MR, Bathur F, Wells A, Dasgupta A (2001) Comparison of BD Vacutainer SST Plus Tubes with BD SST II Plus Tubes for common analytes. Clinica Chimica Acta Int J Clin Chemist 306(1–2):139–143

    Article  CAS  Google Scholar 

  28. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560. doi:10.1136/bmj.327.7414.557

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jackson D, White IR, Thompson SG (2010) Extending DerSimonian and Laird’s methodology to perform multivariate random effects meta-analyses. Stat Med 29(12):1282–1297. doi:10.1002/sim.3602

    Article  PubMed  Google Scholar 

  30. Deeks JJ, Macaskill P, Irwig L (2005) The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 58(9):882–893. doi:10.1016/j.jclinepi.2005.01.016

    Article  PubMed  Google Scholar 

  31. Guo HQ, Huang GL, Guo CC, Pu XX, Lin TY (2010) Diagnostic and prognostic value of circulating miR-221 for extranodal natural killer/T-cell lymphoma. Dis Markers 29(5):251–258. doi:10.3233/dma-2010-0755

    Article  CAS  PubMed  Google Scholar 

  32. Pu XX, Huang GL, Guo HQ, Guo CC, Li H, Ye S, Ling S, Jiang L, Tian Y, Lin TY (2010) Circulating miR-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. J Gastroenterol Hepatol 25(10):1674–1680. doi:10.1111/j.1440-1746.2010.06417.x

    Article  CAS  PubMed  Google Scholar 

  33. Ryu JK, Matthaei H, Dal Molin M, Hong SM, Canto MI, Schulick RD, Wolfgang C, Goggins MG, Hruban RH, Cope L, Maitra A (2011) Elevated microRNA miR-21 levels in pancreatic cyst fluid are predictive of mucinous precursor lesions of ductal adenocarcinoma. Pancreatol Off J Int Assoc Pancreatol (IAP) [et al] 11(3):343–350. doi:10.1159/000329183

    Article  CAS  Google Scholar 

  34. Wu CW, Dong YJ, Ng S, Leung WW, Wong CY, Sung JJ, Chan FKL, Yu J (2011) Identification of a panel of microRNAs in stool as screening markers for colorectal cancer. Gastroenterology 140(5):S73

    Google Scholar 

  35. Yaman Agaoglu F, Kovancilar M, Dizdar Y, Darendeliler E, Holdenrieder S, Dalay N, Gezer U (2011) Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer. Tumour Biol J Int Soc Oncodevelopmental Biol Med 32(3):583–588. doi:10.1007/s13277-011-0154-9

    Article  CAS  Google Scholar 

  36. Pai R, Nehru GA, Samuel P, Selvan B, Kumar R, Jacob PM, Nair A (2012) Discriminating thyroid cancers from benign lesions based on differential expression of a limited set of miRNA using paraffin embedded tissues. Indian J Pathol Microbiol 55(2):158–162. doi:10.4103/0377-4929.97845

    Article  PubMed  Google Scholar 

  37. Song MY, Pan KF, Su HJ, Zhang L, Ma JL, Li JY, Yuasa Y, Kang D, Kim YS, You WC (2012) Identification of serum microRNAs as novel non-invasive biomarkers for early detection of gastric cancer. PLoS One 7(3):e33608. doi:10.1371/journal.pone.0033608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu Q, Wang C, Lu Z, Guo L, Ge Q (2012) Analysis of serum genome-wide microRNAs for breast cancer detection. Clinica Chimica Acta Int J Clin Chemist 413(13–14):1058–1065. doi:10.1016/j.cca.2012.02.016

    Article  CAS  Google Scholar 

  39. Xie HT, Chu ZX, Wang H (2012) Serum microRNA expression profile as a biomarker in diagnosis of acute myeloid leukemia. J Clin Pediatr 30(05):421–424

    CAS  Google Scholar 

  40. Zaravinos A, Radojicic J, Lambrou GI, Volanis D, Delakas D, Stathopoulos EN, Spandidos DA (2012) Expression of miRNAs involved in angiogenesis, tumor cell proliferation, tumor suppressor inhibition, epithelial-mesenchymal transition and activation of metastasis in bladder cancer. J Urol 188(2):615–623. doi:10.1016/j.juro.2012.03.122

    Article  CAS  PubMed  Google Scholar 

  41. Cai H, Yuan Y, Hao YF, Guo TK, Wei X, Zhang YM (2013) Plasma microRNAs serve as novel potential biomarkers for early detection of gastric cancer. Med Oncol (Northwood, London, England) 30(1):452. doi:10.1007/s12032-012-0452-0

    Article  Google Scholar 

  42. Srivastava A, Goldberger H, Dimtchev A, Ramalinga M, Chijioke J, Marian C, Oermann EK, Uhm S, Kim JS, Chen LN, Li X, Berry DL, Kallakury BV, Chauhan SC, Collins SP, Suy S, Kumar D (2013) MicroRNA profiling in prostate cancer—the diagnostic potential of urinary miR-205 and miR-214. PLoS One 8(10):e76994. doi:10.1371/journal.pone.0076994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thapa DR, Hussain SK, Tran WC, D’Souza G, Bream JH, Achenback CJ, Ayyavoo V, Detels R, Martinez-Maza O (2014) Serum microRNAs in HIV-infected individuals as pre-diagnosis biomarkers for AIDS-NHL. J Acquir Immune Defic Syndr 66(2):229–237. doi:10.1097/qai.0000000000000146

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536. doi:10.7326/0003-4819-155-8-201110180-00009

    Article  PubMed  Google Scholar 

  45. Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, Carpenter J, Rucker G, Harbord RM, Schmid CH, Tetzlaff J, Deeks JJ, Peters J, Macaskill P, Schwarzer G, Duval S, Altman DG, Moher D, Higgins JP (2011) Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 343:d4002. doi:10.1136/bmj.d4002

    Article  PubMed  Google Scholar 

  46. Burgoyne AM, Palomo JM, Phillips-Mason PJ, Burden-Gulley SM, Major DL, Zaremba A, Robinson S, Sloan AE, Vogelbaum MA, Miller RH, Brady-Kalnay SM (2009) PTPmu suppresses glioma cell migration and dispersal. Neuro-Oncology 11(6):767–778. doi:10.1215/15228517-2009-019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen L, Zhang J, Han L, Zhang A, Zhang C, Zheng Y, Jiang T, Pu P, Jiang C, Kang C (2012) Downregulation of miR-221/222 sensitizes glioma cells to temozolomide by regulating apoptosis independently of p53 status. Oncol Rep 27(3):854–860. doi:10.3892/or.2011.1535

    CAS  PubMed  Google Scholar 

  48. Quintavalle C, Mangani D, Roscigno G, Romano G, Diaz-Lagares A, Iaboni M, Donnarumma E, Fiore D, De Marinis P, Soini Y, Esteller M, Condorelli G (2013) MiR-221/222 target the DNA methyltransferase MGMT in glioma cells. PLoS One 8(9):e74466. doi:10.1371/journal.pone.0074466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu C, Li M, Hu C, Duan H (2014) Prognostic role of microRNA polymorphisms in patients with advanced esophageal squamous cell carcinoma receiving platinum-based chemotherapy. Cancer Chemother Pharmacol 73(2):335–341. doi:10.1007/s00280-013-2364-x

    Article  CAS  PubMed  Google Scholar 

  50. Wang J, Liu S, Sun GP, Wang F, Zou YF, Jiao Y, Ning J, Xu J (2014) Prognostic significance of microRNA-221/222 expression in cancers: evidence from 1,204 subjects. Int J Biol Markers. doi:10.5301/jbm.5000058

    Google Scholar 

  51. Yang J, Zhang JY, Chen J, Xu Y, Song NH, Yin CJ (2014) Prognostic role of microRNA-221 in various human malignant neoplasms: a meta-analysis of 20 related studies. PLoS One 9(1):e87606. doi:10.1371/journal.pone.0087606

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Science and Technology Development Project of Shandong Province, China (Grant No. 2014GGB14439 and 2014GGB14257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Pang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Pang, B., Xin, T. et al. Plasma miR-221/222 Family as Novel Descriptive and Prognostic Biomarkers for Glioma. Mol Neurobiol 53, 1452–1460 (2016). https://doi.org/10.1007/s12035-014-9079-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-9079-9

Keywords

Navigation