Skip to main content
Log in

Neuroprotective Effect of JZL184 in MPP+-Treated SH-SY5Y Cells Through CB2 Receptors

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Growing evidence suggests that the endocannabinoid system plays a role in neuroprotection in Parkinson’s disease. Recently, we have shown the neuroprotective effect of monoacylglycerol lipase (MAGL) inhibition with JZL184 in the chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model. However, further investigation is needed to determine the neuroprotective mechanisms of the endocannabinoid system on the nigrostriatal pathway. The aim of this work was to investigate whether the neuroprotective effect of JZL184 in mice could be extended to an in vitro cellular model to further understand the mechanism of action of the drug. The SH-SY5Y cell line was selected based on its dopaminergic-like phenotype and its susceptibility to 1-methyl-4-phenylpyridinium iodide (MPP+) toxicity. Furthermore, SH-SY5Y cells express both cannabinoid receptors, CB1 and CB2. The present study describes the neuroprotective effect of MAGL inhibition with JZL184 in SH-SY5Y cells treated with MPP+. The effect of JZL184 in cell survival was blocked by AM630, a CB2 receptor antagonist, and it was mimicked with JWH133, a CB2 receptor agonist. Rimonabant, a CB1 receptor antagonist, did not affect JZL184-induced cell survival. These results demonstrate that the neuroprotective effect of MAGL inhibition with JZL184 described in animal models of Parkinson’s disease could be extended to in vitro models such as SH-SY5Y cells treated with MPP+. This represents a useful tool to study mechanisms of neuroprotection mediated by MAGL inhibition, and we provide evidence for the possible involvement of CB2 receptors in the improvement of cell survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2-AG:

2-Arachidonoyl glycerol

AEA:

Anandamide

CB1 :

Cannabinoid type 1

CB2 :

Cannabinoid type 2

ECS:

Endocannabinoid system

FAAH:

Fatty acid amide hydrolase

MAGL:

Monoacylglycerol lipase

MPP+ :

1-Methyl-4-phenylpyridinium iodide

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

References

  1. Mechoulam R, Parker LA (2013) The endocannabinoid system and the brain. Annu Rev Psychol 64:21–47. doi:10.1146/annurev-psych-113011-143739

    Article  PubMed  Google Scholar 

  2. Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S et al (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50(1):83–90

    Article  CAS  PubMed  Google Scholar 

  3. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A et al (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258(5090):1946–1949

    Article  CAS  PubMed  Google Scholar 

  4. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346(6284):561–564. doi:10.1038/346561a0

    Article  CAS  PubMed  Google Scholar 

  5. Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365(6441):61–65. doi:10.1038/365061a0

    Article  CAS  PubMed  Google Scholar 

  6. Dinh TP, Carpenter D, Leslie FM, Freund TF, Katona I, Sensi SL, Kathuria S, Piomelli D (2002) Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci U S A 99(16):10819–10824. doi:10.1073/pnas.152334899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384(6604):83–87. doi:10.1038/384083a0

    Article  CAS  PubMed  Google Scholar 

  8. Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, Rice KC (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A 87(5):1932–1936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ahn K, Johnson DS, Mileni M, Beidler D, Long JZ, McKinney MK, Weerapana E, Sadagopan N et al (2009) Discovery and characterization of a highly selective FAAH inhibitor that reduces inflammatory pain. Chem Biol 16(4):411–420. doi:10.1016/j.chembiol.2009.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Petrosino S, Di Marzo V (2010) FAAH and MAGL inhibitors: therapeutic opportunities from regulating endocannabinoid levels. Curr Opin Investig Drugs 11(1):51–62

    CAS  PubMed  Google Scholar 

  11. Fernandez-Suarez D, Celorrio M, Riezu-Boj JI, Ugarte A, Pacheco R, Gonzalez H, Oyarzabal J, Hillard CJ et al (2014) The monoacylglycerol lipase inhibitor JZL184 is neuroprotective and alters glial cell phenotype in the chronic MPTP mouse model. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2014.05.021

    PubMed  Google Scholar 

  12. Cabral GA, Raborn ES, Griffin L, Dennis J, Marciano-Cabral F (2008) CB2 receptors in the brain: role in central immune function. Br J Pharmacol 153(2):240–251. doi:10.1038/sj.bjp.0707584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Onaivi ES (2006) Neuropsychobiological evidence for the functional presence and expression of cannabinoid CB2 receptors in the brain. Neuropsychobiology 54(4):231–246. doi:10.1159/000100778

    Article  CAS  PubMed  Google Scholar 

  14. Garcia MC, Cinquina V, Palomo-Garo C, Rabano A, Fernandez-Ruiz J (2015) Identification of CB(2) receptors in human nigral neurons that degenerate in Parkinson’s disease. Neurosci Lett 587:1–4. doi:10.1016/j.neulet.2014.12.003

    Article  CAS  PubMed  Google Scholar 

  15. Lastres-Becker I, Molina-Holgado F, Ramos JA, Mechoulam R, Fernandez-Ruiz J (2005) Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: relevance to Parkinson’s disease. Neurobiol Dis 19(1–2):96–107. doi:10.1016/j.nbd.2004.11.009

    Article  CAS  PubMed  Google Scholar 

  16. Price DA, Martinez AA, Seillier A, Koek W, Acosta Y, Fernandez E, Strong R, Lutz B et al (2009) WIN55,212-2, a cannabinoid receptor agonist, protects against nigrostriatal cell loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Eur J Neurosci 29(11):2177–2186. doi:10.1111/j.1460-9568.2009.06764.x

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fall CP, Bennett JP Jr (1999) Characterization and time course of MPP+-induced apoptosis in human SH-SY5Y neuroblastoma cells. J Neurosci Res 55(5):620–628. doi:10.1002/(SICI)1097-4547(19990301)55:5<620::AID-JNR9>3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  18. Pasquariello N, Catanzaro G, Marzano V, Amadio D, Barcaroli D, Oddi S, Federici G, Urbani A et al (2009) Characterization of the endocannabinoid system in human neuronal cells and proteomic analysis of anandamide-induced apoptosis. J Biol Chem 284(43):29413–29426. doi:10.1074/jbc.M109.044412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hynes J, Floyd S, Soini AE, O’Connor R, Papkovsky DB (2003) Fluorescence-based cell viability screening assays using water-soluble oxygen probes. J Biomol Screen 8(3):264–272. doi:10.1177/1087057103008003004

    Article  CAS  PubMed  Google Scholar 

  20. Yang MC, Chen KP, Lung FW (2014) Generalized estimating equation model and long-term exposure effect of antipsychotics on SH-SY5Y cells against oxidative stressors. Eur J Pharmacol. doi:10.1016/j.ejphar.2014.06.007

    Google Scholar 

  21. De Simoni S, Linard D, Hermans E, Knoops B, Goemaere J (2013) Mitochondrial peroxiredoxin-5 as potential modulator of mitochondria-ER crosstalk in MPP+-induced cell death. J Neurochem 125(3):473–485. doi:10.1111/jnc.12117

    Article  PubMed  Google Scholar 

  22. Long JZ, Li W, Booker L, Burston JJ, Kinsey SG, Schlosburg JE, Pavon FJ, Serrano AM et al (2009) Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol 5(1):37–44. doi:10.1038/nchembio.129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mor M, Rivara S, Lodola A, Plazzi PV, Tarzia G, Duranti A, Tontini A, Piersanti G et al (2004) Cyclohexylcarbamic acid 3′- or 4′-substituted biphenyl-3-yl esters as fatty acid amide hydrolase inhibitors: synthesis, quantitative structure-activity relationships, and molecular modeling studies. J Med Chem 47(21):4998–5008. doi:10.1021/jm031140x

    Article  CAS  PubMed  Google Scholar 

  24. Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res 38(11 Pt 1):3751–3757

    CAS  PubMed  Google Scholar 

  25. Farooqui SM (1994) Induction of adenylate cyclase sensitive dopamine D2-receptors in retinoic acid induced differentiated human neuroblastoma SHSY-5Y cells. Life Sci 55(24):1887–1893

    Article  CAS  PubMed  Google Scholar 

  26. Buck KJ, Amara SG (1994) Chimeric dopamine-norepinephrine transporters delineate structural domains influencing selectivity for catecholamines and 1-methyl-4-phenylpyridinium. Proc Natl Acad Sci U S A 91(26):12584–12588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kallendrusch S, Hobusch C, Ehrlich A, Nowicki M, Ziebell S, Bechmann I, Geisslinger G, Koch M et al (2012) Intrinsic up-regulation of 2-AG favors an area specific neuronal survival in different in vitro models of neuronal damage. PLoS ONE 7(12):e51208. doi:10.1371/journal.pone.0051208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nomura DK, Morrison BE, Blankman JL, Long JZ, Kinsey SG, Marcondes MC, Ward AM, Hahn YK et al (2011) Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science 334(6057):809–813. doi:10.1126/science.1209200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nader J, Rapino C, Gennequin B, Chavant F, Francheteau M, Makriyannis A, Duranti A, Maccarrone M et al (2014) Prior stimulation of the endocannabinoid system prevents methamphetamine-induced dopaminergic neurotoxicity in the striatum through activation of CB receptors. Neuropharmacology. doi:10.1016/j.neuropharm.2014.03.014

    Google Scholar 

  30. Giordano M, Takashima H, Herranz A, Poltorak M, Geller HM, Marone M, Freed WJ (1993) Immortalized GABAergic cell lines derived from rat striatum using a temperature-sensitive allele of the SV40 large T antigen. Exp Neurol 124(2):395–400

    Article  CAS  PubMed  Google Scholar 

  31. Valdeolivas S, Pazos MR, Bisogno T, Piscitelli F, Iannotti FA, Allara M, Sagredo O, Di Marzo V et al (2013) The inhibition of 2-arachidonoyl-glycerol (2-AG) biosynthesis, rather than enhancing striatal damage, protects striatal neurons from malonate-induced death: a potential role of cyclooxygenase-2-dependent metabolism of 2-AG. Cell Death Dis 4:e862. doi:10.1038/cddis.2013.387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Klegeris A, Bissonnette CJ, McGeer PL (2003) Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor. Br J Pharmacol 139(4):775–786. doi:10.1038/sj.bjp.0705304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Garcia C, Palomo-Garo C, Garcia-Arencibia M, Ramos J, Pertwee R, Fernandez-Ruiz J (2011) Symptom-relieving and neuroprotective effects of the phytocannabinoid Delta(9)-THCV in animal models of Parkinson’s disease. Br J Pharmacol 163(7):1495–1506. doi:10.1111/j.1476-5381.2011.01278.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gomez-Galvez Y, Palomo-Garo C, Fernandez-Ruiz J, Garcia C (2015) Potential of the cannabinoid CB receptor as a pharmacological target against inflammation in Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry. doi:10.1016/j.pnpbp.2015.03.017

    PubMed  Google Scholar 

  35. Wotherspoon G, Fox A, McIntyre P, Colley S, Bevan S, Winter J (2005) Peripheral nerve injury induces cannabinoid receptor 2 protein expression in rat sensory neurons. Neuroscience 135(1):235–245. doi:10.1016/j.neuroscience.2005.06.009

    Article  CAS  PubMed  Google Scholar 

  36. Onaivi ES, Ishiguro H, Gong JP, Patel S, Meozzi PA, Myers L, Perchuk A, Mora Z et al (2008) Brain neuronal CB2 cannabinoid receptors in drug abuse and depression: from mice to human subjects. PLoS ONE 3(2):e1640. doi:10.1371/journal.pone.0001640

    Article  PubMed  PubMed Central  Google Scholar 

  37. Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL et al (2007) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320(1):1–13. doi:10.1124/jpet.106.104463

    Article  CAS  PubMed  Google Scholar 

  38. Benard G, Massa F, Puente N, Lourenco J, Bellocchio L, Soria-Gomez E, Matias I, Delamarre A et al (2012) Mitochondrial CB(1) receptors regulate neuronal energy metabolism. Nat Neurosci 15(4):558–564. doi:10.1038/nn.3053

    Article  CAS  PubMed  Google Scholar 

  39. Palazuelos J, Davoust N, Julien B, Hatterer E, Aguado T, Mechoulam R, Benito C, Romero J et al (2008) The CB(2) cannabinoid receptor controls myeloid progenitor trafficking: involvement in the pathogenesis of an animal model of multiple sclerosis. J Biol Chem 283(19):13320–13329. doi:10.1074/jbc.M707960200

    Article  CAS  PubMed  Google Scholar 

  40. Palazuelos J, Aguado T, Pazos MR, Julien B, Carrasco C, Resel E, Sagredo O, Benito C et al (2009) Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain 132(Pt 11):3152–3164. doi:10.1093/brain/awp239

    Article  PubMed  Google Scholar 

  41. Castillo A, Tolon MR, Fernandez-Ruiz J, Romero J, Martinez-Orgado J (2010) The neuroprotective effect of cannabidiol in an in vitro model of newborn hypoxic-ischemic brain damage in mice is mediated by CB(2) and adenosine receptors. Neurobiol Dis 37(2):434–440. doi:10.1016/j.nbd.2009.10.023

    Article  CAS  PubMed  Google Scholar 

  42. Murikinati S, Juttler E, Keinert T, Ridder DA, Muhammad S, Waibler Z, Ledent C, Zimmer A et al (2010) Activation of cannabinoid 2 receptors protects against cerebral ischemia by inhibiting neutrophil recruitment. FASEB J 24(3):788–798. doi:10.1096/fj.09-141275

    Article  CAS  PubMed  Google Scholar 

  43. Ramirez BG, Blazquez C, Gomez del Pulgar T, Guzman M, de Ceballos ML (2005) Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 25(8):1904–1913. doi:10.1523/JNEUROSCI.4540-04.2005

    Article  CAS  PubMed  Google Scholar 

  44. Maresz K, Carrier EJ, Ponomarev ED, Hillard CJ, Dittel BN (2005) Modulation of the cannabinoid CB2 receptor in microglial cells in response to inflammatory stimuli. J Neurochem 95(2):437–445. doi:10.1111/j.1471-4159.2005.03380.x

    Article  CAS  PubMed  Google Scholar 

  45. Garcia-Ovejero D, Arevalo-Martin A, Petrosino S, Docagne F, Hagen C, Bisogno T, Watanabe M, Guaza C et al (2009) The endocannabinoid system is modulated in response to spinal cord injury in rats. Neurobiol Dis 33(1):57–71. doi:10.1016/j.nbd.2008.09.015

    Article  CAS  PubMed  Google Scholar 

  46. Gonsiorek W, Lunn C, Fan X, Narula S, Lundell D, Hipkin RW (2000) Endocannabinoid 2-arachidonyl glycerol is a full agonist through human type 2 cannabinoid receptor: antagonism by anandamide. Mol Pharmacol 57(5):1045–1050

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the project PI14/02070 from the Spanish Government (Plan estatal I+D+I 2013–2016 and ISCIII-FEDER) and the UTE-project/Foundation for Applied Medical Research (FIMA). Estefanía Rojo-Bustamante is supported by a predoctoral fellowship from Colfuturo. We thank Oxoprobics Bioscience for the oxygen-sensing plates.

Conflict of Interest

JA Sánchez-Arias is a co-founder of Oxoprobics Bioscience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María S. Aymerich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aymerich, M.S., Rojo-Bustamante, E., Molina, C. et al. Neuroprotective Effect of JZL184 in MPP+-Treated SH-SY5Y Cells Through CB2 Receptors. Mol Neurobiol 53, 2312–2319 (2016). https://doi.org/10.1007/s12035-015-9213-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9213-3

Keywords

Navigation