Skip to main content

Advertisement

Log in

Increased Plasma Levels of Xanthurenic and Kynurenic Acids in Type 2 Diabetes

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

About 350 million people worldwide have type 2 diabetes (T2D). The major risk factor of T2D is impaired glucose tolerance (pre-diabetes) with 10 % of pre-diabetes subjects develop T2D every year. Understanding of mechanisms of development of T2D from pre-diabetes is important for prevention and treatment of T2D. Chronic stress and chronic low-grade inflammation are prominent risk factors for T2D development in pre-diabetic subjects. However, molecular mechanisms mediating effect of stress and inflammation on development of T2D from pre-diabetes remain unknown. One of such mechanisms might involve kynurenine (KYN) pathway (KP) of tryptophan (TRP) metabolism. We suggested that chronic stress- or chronic low-grade inflammation-induced upregulation of formation of upstream KTP metabolites, KYN and 3-hydroxyKYN, combined with chronic stress- or chronic low-grade inflammation-induced deficiency of pyridoxal 5′-phosphate, a co-factor of downstream enzymes of KTP, triggers overproduction of diabetogenic downstream KYN metabolites, kynurenic acid (KYNA) and 3-hydroxyKYNA (also known as xanthurenic acid (XA)). As the initial assessment of our working hypothesis, we evaluated plasma levels of up- and downstream KP metabolites in the same samples of T2D patients. KYN, XA, and KYNA levels in plasma samples of T2D patients were higher than in samples of non-diabetic subjects. Our results provide further support of “kynurenine hypothesis of insulin resistance and its progression to T2D” that suggested that overproduction of diabetogenic KP metabolites, induced by chronic stress or chronic low-grade inflammation, is one of the mechanisms promoting development of T2D from pre-diabetes. Downstream metabolites of KP might serve as biomarkers of T2D and targets for clinical intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

T2D:

Type 2 diabetes

IR:

Insulin resistance

TRP:

Tryptophan

NAD:

Nicotinamide adenine dinucleotide

IFNG:

Interferon gamma

LPS:

Lipopolysaccharide

KP:

Kynurenine pathway of TRP metabolism

KYN:

Kynurenine

KYNA:

Kynurenic acid

3-HKYN:

3-hydroxykynurenine

3-HKYNA:

3-hydroxykynurenic acid

XA:

Xanthurenic acid

3-HAA:

3-hydroxyanthranilic acid

KMO:

Kynurenine 3-monooxygenase

P5P:

Pyridoxal 5′-phosphate

KAT:

Kynurenine aminotransferase

KYNase:

Kynureninase

IDO:

Indoleamine-2,3-dioxygenase

TDO:

Tryptophan-2,3-dioxygenase

HIV:

Human immunodeficiency virus

HCV:

Hepatitis C virus

HOMA:

Homeostatic model assessment

References

  1. Hackett RA, Steptoe A, Kumari M (2014) Association of diurnal patterns in salivary cortisol with type 2 diabetes in the Whitehall II study. J Clin Endocrinol Metab 99:4625–4631. doi:10.1210/jc.2014-2459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72:219–246

    Article  CAS  PubMed  Google Scholar 

  3. Connick JH, Stone TW (1985) The role of kynurenines in diabetes mellitus. Med Hypotheses 18:371–376

    Article  CAS  PubMed  Google Scholar 

  4. Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ (2012) Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 13:465–477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Alberati-Giani D, Ricciardi-Castagnoli P, Kohler C, Cesura AM (1996) Regulation of the kynurenine metabolic pathway by interferon-gamma in murine cloned macrophages and microglial cells. J Neurochem 66:996–1004

    Article  CAS  PubMed  Google Scholar 

  6. Musajo L (1935) L’acido xanthurenico. Rend Accad Nazl Lincci 21:368–371

    CAS  Google Scholar 

  7. Mahuren JD, Dubeski PL, Cook NJ, Schaefer AL, Coburn SP (1999) Adrenocorticotropic hormone increases hydrolysis of B-6 vitamers in swine adrenal glands. J Nutr 129:1905–1908

    CAS  PubMed  Google Scholar 

  8. Paul L, Ueland PM, Selhub J (2013) Mechanistic perspective on the relationship between pyridoxal 5′-phosphate and inflammation. Nutr Rev 71:239–244

    Article  PubMed  Google Scholar 

  9. Rios-Avila L, Nijhout HF, Reed MC, Sitren HS, Gregory JF 3rd (2013) A mathematical model of tryptophan metabolism via the kynurenine pathway provides insights into the effects of vitamin B-6 deficiency, tryptophan loading, and induction of tryptophan 2,3-dioxygenase on tryptophan metabolites. J Nutr 143:1509–1519. doi:10.3945/jn.113.174599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kotake Y (1955) Xanthurenic acid, an abnormal metabolite of tryptophan and the diabetic symptoms caused in albino rats by its production. J Vitaminol (Kyoto) 1:73–87

    Article  CAS  Google Scholar 

  11. Ikeda S, Kotake Y (1984) Urinary excretion of xanthurenic acid and zinc in diabetes: 1) separation of xanthurenic acid-Zn2+ complex by ion-exchange chromatography. Acta Vitaminol Enzymol 6:23–28

    CAS  PubMed  Google Scholar 

  12. Okamoto H (1981) Regulation of proinsulin synthesis in pancreatic islets and a new aspect to insulin-dependent diabetes. Mol Cell Biochem 37:43–61

    Article  CAS  PubMed  Google Scholar 

  13. Murakami E, Kotake Y (1972) Studies on the xanthurenic acid-insulin complex. 3. Distribution of xanthurenic acid and formation of xanthurenic acid-insulin complex in serum. J Biochem 72:251–259

    CAS  PubMed  Google Scholar 

  14. Meyramov G, Korchin V, Kocheryzkina N (1998) Diabetogenic activity of xanturenic acid determined by its chelating properties? Transplant Proc 30:2682–2684

    Article  CAS  PubMed  Google Scholar 

  15. Oxenkrug G (2013) Insulin resistance and dysregulation of tryptophan-kynurenine and kynurenine-nicotinamide adenine dinucleotide metabolic pathways. Mol Neurobiol 48:294–301. doi:10.1007/s12035-013-8497-4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Oxenkrug GF, Turski WA, Zgrajka W, Weinstock JV, Summergrad P (2013) Tryptophan-kynurenine metabolism and insulin resistance in hepatitis C patients. Hepat Res Treat 2013: 149247

  17. Manusadzhian VG, Kniazev IA, Vakhrusheva LL (1974) Mass spectrometric identification of xanthurenic acid in pre-diabetes. Vopr Med Khim 20:95–97

    CAS  PubMed  Google Scholar 

  18. Midttun O, Ulvik A, Pedersen E, Ebbing M, Bleie O et al (2011) Low plasma vitamin B-6 status affects metabolism through the kynurenine pathway in cardiovascular patients with systemic inflammation. J Nutr 141:611–617

    Article  CAS  PubMed  Google Scholar 

  19. Marchetti P, Masiello P, Benzi L, Cecchetti P, Fierabracci V, Giannarelli R, Gregorio F, Brunetti P et al (1989) Effects of metformin therapy on plasma amino acid pattern in patients with maturity-onset diabetes. Drugs Exp Clin Res 15:565–570

    CAS  PubMed  Google Scholar 

  20. Do MT, Kim HG, Tran TT, Khanal T, Choi JH, Chung YC, Jeong TC, Jeong HG (2014) Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression. Toxicol Appl Pharmacol 280:138–148. doi:10.1016/j.taap.2014.07.021

    Article  CAS  PubMed  Google Scholar 

  21. Khattab M, Abul-Fadl M, Khalafallah A, Hamza S (1972) Studies on the urinary excretion of certain tryptophan metabolites in diabetics. J Egypt Med Assoc 55:531–541

    CAS  PubMed  Google Scholar 

  22. Calandra P (1977) Identification of tryptophan metabolites in the healthy epidermis of diabetics. Acta Diabetol Lat 14:1426-37

  23. Munipally PK, Agraharm SG, Valavala VK, Gundae S, Turlapati NR (2011) Evaluation of indoleamine 2,3-dioxygenase expression and kynurenine pathway metabolites levels in serum samples of diabetic retinopathy patients. Arch Physiol Biochem 117:254–258. doi:10.3109/13813455.2011.623705

    Article  CAS  PubMed  Google Scholar 

  24. Hayaishi O (1976) Properties and function of indoleamine 2,3-dioxygenase. J Biochem 79:13–21

    Google Scholar 

  25. Sucher R, Schroecksnadel K, Weiss G, Margreiter R, Fuchs D, Brandacher G (2010) Neopterin, a prognostic marker in human malignancies. Cancer Lett 287:13–22

    Article  CAS  PubMed  Google Scholar 

  26. Oxenkrug G, Tucker KL, Requintina P, Summergrad P (2011) Neopterin, a marker of interferon-gamma-inducible inflammation, correlates with pyridoxal-5′-phosphate, waist circumference, HDL-cholesterol, insulin resistance and mortality risk in adult Boston community dwellers of Puerto Rican origin. Am J Neuroprot Neuroregen 3:48–52

    Article  PubMed Central  PubMed  Google Scholar 

  27. Shibata K, Mushiage M, Kondo T, Hayakawa T, Tsuge H (1955) Effects of vitamin B6 deficiency on the conversion ratio of tryptophan to niacin. Biosci Biotechnol Biochem 59:2060–2063

    Article  Google Scholar 

  28. Yeh JK, Brown RR (1977) Effects of vitamin B-6 deficiency and tryptophan loading on urinary excretion of tryptophan metabolites in mammals. J Nutr 107:261–271

    CAS  PubMed  Google Scholar 

  29. Bender DA, Njagi EN, Danielian PS (1990) Tryptophan metabolism in vitamin B6-deficient mice. Br J Nutr 63:27–36

    Article  CAS  PubMed  Google Scholar 

  30. Midttun O, Ulvik A, Ringdal Pedersen E, Ebbing M, Bleie O, Schartum-Hansen H, Nilsen RM, Nygard O et al (2011) Low plasma vitamin B-6 status affects metabolism through the kynurenine pathway in cardiovascular patients with systemic inflammation. J Nutr 141:611–617

    Article  CAS  PubMed  Google Scholar 

  31. Pedersen ER, Tuseth N, Eussen SJ, Ueland PM, Strand E, Svingen GF, Midttun Ø, Meyer K et al (2015) Associations of plasma kynurenines with risk of acute myocardial infarction in patients with stable angina pectoris. Arterioscler Thromb Vasc Biol 35:455–462. doi:10.1161/ATVBAHA.114.304674

    Article  CAS  PubMed  Google Scholar 

  32. Oxenkrug G, Ratner R, Summergrad P (2013) Kynurenines and vitamin B6: link between diabetes and depression. J Bioinformatics Diabetes 1:1–9. doi:10.14302/issn.2374-9431.jbd-13-212

    Google Scholar 

  33. Oxenkrug G (2015) 3-Hydroxykynurenic acid and type 2 diabetes: implications for aging, obesity, depression, Parkinson’s disease and schizophrenia. In: Engin A, Engin AB (eds) Tryptophan metabolism: implications for biological processes, health and diseases, molecular and integrative toxicology. Springer International Publishing, Switzerland, pp 173–195. doi:10.1007/978-3-319-15630-9_8

    Google Scholar 

  34. Polyzos KA, Ketelhuth DF (2015) The role of the kynurenine pathway of tryptophan metabolism in cardiovascular disease. An emerging field. Hamostaseologie 35:128–136. doi:10.5482/HAMO-14-10-00562

Download references

Acknowledgments

This study is supported by NIMH104810. The author highly appreciates BioreclamationIVT, NY, USA, for providing plasma samples and Marieke van der Hart, PhD, for the excellent help with biochemical analyses

Conflict of Interest

The author declares that he has no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory F. Oxenkrug.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oxenkrug, G.F. Increased Plasma Levels of Xanthurenic and Kynurenic Acids in Type 2 Diabetes. Mol Neurobiol 52, 805–810 (2015). https://doi.org/10.1007/s12035-015-9232-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9232-0

Keywords

Navigation