Skip to main content
Log in

CX3CL1/CX3CR1 Axis Plays a Key Role in Ischemia-Induced Oligodendrocyte Injury via p38MAPK Signaling Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Based on current knowledge on the role of the CX3CL1/CX3CR1 axis in the regulation of microglial activation and on the involvement of activated microglia in damaging oligodendrocytes, we hypothesized that CX3CL1/CX3CR1 axis is associated with the development of ischemic oligodendrocyte and white matter injury. We investigated the effects of CX3CL1, CX3CR1 shRNA, and p38MAPK inhibitor on the apoptosis, proliferation, and myelin proteolipid protein (PLP) expression in oligodendrocytes in co-cultures with BV2 microglia under ischemia. We demonstrated that CX3CL1 markedly increased the numbers of apoptotic oligodendrocytes, decreased PLP expression in oligodendrocytes, and inhibited the increased proliferation of oligodendrocytes induced by ischemia in co-cultures. All these effects of CX3CL1 were suppressed by pre-treatment of BV2 microglia with CX3CR1 shRNA to silence CX3CR1 expression or SB203580 to inhibit p38MAPK pathway. Our findings support that CX3CL1/CX3CR1 axis plays a key role in the development of ischemia-induced oligodendrocyte injury via p38MAPK signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CX3CL1:

Fractalkine

CX3CR1:

CX3CL1 receptor

IL-1β:

Interleukin-1β

OGD:

Oxygen and glucose deprivation

PLP:

Myelin proteolipid protein

TNF-α:

Tumor necrosis factor alpha

References

  1. Patel B, Markus HS (2011) Magnetic resonance imaging in cerebral small vessel disease and its use as a surrogate disease marker. Int J Stroke 6:47–59

    Article  PubMed  Google Scholar 

  2. Matute C, Domercq M, Pérez-Samartín A, Ransom BR (2013) Protecting white matter from stroke injury. Stroke 44:1204–1211

    Article  PubMed  Google Scholar 

  3. Goldberg MP, Ransom BR (2003) New light on white matter. Stroke 34:330–332

    Article  PubMed  Google Scholar 

  4. Farkas E, Donka G, de Vos RA, Mihály A, Bari F, Luiten PG (2004) Experimental cerebral hypoperfusion induces white matter injury and microglial activation in the rat brain. Acta Neuropathol 108:57–64

    Article  PubMed  Google Scholar 

  5. Hamner MA, Moller T, Ransom BR (2011) Anaerobic function of CNS white matter declines with age. J Cereb Blood Flow Metab 31:996–1002

    Article  PubMed  Google Scholar 

  6. Pantoni L, Garcia JH, Gutierrez JA (1996) Cerebral white matter is highly vulnerable to ischemia. Stroke 27:1641–1646

    Article  CAS  PubMed  Google Scholar 

  7. Dewar D, Underhill SM, Goldberg MP (2003) Oligodendrocytes and ischemic brain injury. J Cereb Blood Flow Metab 23:263–274

    Article  PubMed  Google Scholar 

  8. Thorburne SK, Juurlink BH (1996) Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J Neurochem 67:1014–1022

    Article  CAS  PubMed  Google Scholar 

  9. Juurlink BH, Thorburne SK, Hertz L (1998) Peroxide-scavenging deficit underlies oligodendrocyte susceptibility to oxidative stress. Glia 22:371–378

    Article  CAS  PubMed  Google Scholar 

  10. Masumura M, Hata R, Nagai Y, Sawada T (2001) Oligodendroglial cell death with DNA fragmentation in the white matter under chronic cerebral hypoperfusion: comparison between normotensive and spontaneously hypertensive rats. Neurosci Res 39:401–412

    Article  CAS  PubMed  Google Scholar 

  11. Deng Y, Lu J, Sivakumar V, Ling EA, Kaur C (2008) Amoeboid microglia in the periventricular white matter induce oligodendrocyte damage through expression of proinflammatory cytokines via MAP kinase signaling pathway in hypoxic neonatal rats. Brain Pathol 18:387–400

    Article  CAS  PubMed  Google Scholar 

  12. Moxon-Emre I, Schlichter LC (2010) Evolution of inflammation and white matter injury in a model of transient focal ischemia. J Neuropathol Exp Neurol 69:1–15

    Article  CAS  PubMed  Google Scholar 

  13. Kim HJ, Chuang DM (2014) HDAC inhibitors mitigate ischemia-induced oligodendrocyte damage: potential roles of oligodendrogenesis, VEGF, and anti-inflammation. Am J Transl Res 6:206–223

    PubMed  PubMed Central  Google Scholar 

  14. Mifsud G, Zammit C, Muscat R, Di Giovanni G, Valentino M (2014) Oligodendrocyte pathophysiology and treatment strategies in cerebral ischemia. CNS Neurosci Ther 20:603–612

    Article  CAS  PubMed  Google Scholar 

  15. Li J, Baud O, Vartanian T, Volpe JJ, Rosenberg PA (2005) Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci U S A 102:9936–9941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sriram S (2011) Role of glial cells in innate immunity and their role in CNS demyelination. J Neuroimmunol 239:13–20

    Article  CAS  PubMed  Google Scholar 

  17. Elitt CM, Rosenberg PA (2014) The challenge of understanding cerebral white matter injury in the premature infant. Neuroscience 276:216–238

    Article  CAS  PubMed  Google Scholar 

  18. Briones TL, Woods J, Wadowska M (2014) Chronic neuroinflammation and cognitive impairment following transient global cerebral ischemia: role of fractalkine/CX3CR1 signaling. J Neuroinflammation 11:13

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, Greaves DR, Zlotnik A et al (1997) A new class of membrane bound chemokine with a CX3C motif. Nature 385:640–644

    Article  CAS  PubMed  Google Scholar 

  20. Hughes PM, Botham MS, Frentzel S, Mir A, Perry VH (2002) Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, during acute and chronic inflammation in the rodent CNS. Glia 32:314–327

    Article  Google Scholar 

  21. Soriano SG, Amaravadi LS, Wang YF, Zhou H, Yu GX, Tonra JR, Fairchild-Huntress V, Fang Q et al (2002) Mice deficient in fractalkine are less susceptible to cerebral ischemia-reperfusion injury. J Neuroimmunol 125:59–65

    Article  CAS  PubMed  Google Scholar 

  22. Denes A, Ferenczi S, Halasz J, Kornyei Z, Kovacs K (2008) Role of CX3CR1 (fractalkine receptor) in brain damage and neuroinflammation induced by focal cerebral ischemia in mouse. J Cereb Blood Flow Metab 28:1707–1721

    Article  CAS  PubMed  Google Scholar 

  23. Fumagalli S, Perego C, Ortolano F, De Simoni MG (2013) CX3CR1 deficiency induces an early protective inflammatory environment in ischemic mice. Glia 61:827–842

    Article  PubMed  Google Scholar 

  24. Sheridan GK, Murphy KJ (2013) Neuron-glia crosstalk in health and disease: fractalkine and CX3CR1 take centre stage. Open Biol 3:130181

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tang Z, Gan Y, Liu Q, Yin JX, Liu Q, Shi J, Shi FD (2014) CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke. J Neuroinflammation 11:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cipriani R, Villa P, Chece G, Lauro C, Paladini A, Micotti E, Perego C, De Simoni MG et al (2011) CX3CL1 is neuroprotective in permanent focal cerebral ischemia in rodents. J Neurosci 31:16327–16335

    Article  CAS  PubMed  Google Scholar 

  27. Rodriguez-Crespo D, Di Lauro S, Singh AK, Garcia-Gutierrez MT, Garrosa M, Pastor JC, Fernandez-Bueno I, Srivastava GK (2014) Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res 358:705–716

    Article  CAS  PubMed  Google Scholar 

  28. Yao Z, Song X, Cao S, Liang W, Lu W, Yang L, Zhang Z, Wei L (2014) Role of the exogenous HCV core protein in the interaction of human hepatocyte proliferation and macrophage sub-populations. PLoS One 9:e108278

    Article  PubMed  PubMed Central  Google Scholar 

  29. Qian ZM, He X, Liang T, Wu KC, Yan YC, Lu LN, Yang G, Luo QQ et al (2014) Lipopolysaccharides upregulate hepcidin in neuron via microglia and the IL-6/STAT3 signaling pathway. Mol Neurobiol 50:811–820

    Article  CAS  PubMed  Google Scholar 

  30. Wu XM, Qian ZM, Zhu L, Du F, Yung W, Ke Y (2011) Neuroprotective effect of ligustilide against ischemia-reperfusion injury via up-regulation of erythropoietin and down-regulation of RTP801. Brit J Pharmacol 164:332–343

    Article  CAS  Google Scholar 

  31. Du F, Zhu L, Qian ZM, Wu XM, Yung WH, Ke Y (2010) Hyperthermic preconditioning protects astrocytes from ischemia/reperfusion injury by up-regulation of HIF-1 alpha expression and binding activity. Biochim Biophys Acta 1802:1048–1053

    Article  CAS  PubMed  Google Scholar 

  32. Du F, Qian C, Qian ZM, Wu XM, Xie H, Yung WH, Ke Y (2011) Hepcidin directly inhibits transferrin receptor 1 expression in astrocytes via a cyclic AMP-protein kinase A pathway. Glia 59:936–945

    Article  PubMed  Google Scholar 

  33. Du F, Qian ZM, Zhu L, Wu XM, Yung WH, Tsim TY, Ke Y (2009) L-DOPA neurotoxicity is mediated by up-regulation of DMT1-IRE expression. PLoS One 4:e4593

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wight PA, Dobretsova A (2004) Where, when and how much: regulation of myelin proteolipid protein gene expression. Cell Mol Life Sci 61:810–821

    Article  CAS  PubMed  Google Scholar 

  35. Fowler JH, Edgar JM, Pringle A, McLaughlin M, McCulloch J, Griffiths IR, Garbern JY, Nave KA et al (2006) Alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid-mediated excitotoxic axonal damage is attenuated in the absence of myelin proteolipid protein. J Neurosci Res 84:68–77

    Article  CAS  PubMed  Google Scholar 

  36. Baron W, Hoekstra D (2010) On the biogenesis of myelin membranes: sorting, trafficking and cell polarity. FEBS Lett 584:1760–1770

    Article  CAS  PubMed  Google Scholar 

  37. Skoff RP, Bessert DA, Barks JD, Song D, Cerghet M, Silverstein FS (2001) Hypoxic-ischemic injury results in acute disruption of myelin gene expression and death of oligodendroglial precursors in neonatal mice. Int J Dev Neurosci 19:197–208

    Article  CAS  PubMed  Google Scholar 

  38. Mandai K, Matsumoto M, Kitagawa K, Matsushita K, Ohtsuki T, Mabuchi T, Colman DR (1997) Ischemic damage and subsequent proliferation of oligodendrocytes in focal cerebral ischemia. Neuroscience 77:849–861

    Article  CAS  PubMed  Google Scholar 

  39. Owens T (2009) Toll-like receptors in neurodegeneration. Curr Top Microbiol Immunol 336:105–120

    CAS  PubMed  Google Scholar 

  40. Lehnardt S (2010) Innate immunity and neuroinflammation in the CNS: the role of microglia in toll-like receptor-mediated neuronal injury. Glia 58:253–263

    PubMed  Google Scholar 

  41. Touzani O, Boutin H, LeFeuvre R, Parker L, Miller A, Luheshi G, Rothwell N (2002) Interleukin-1 influences ischemic brain damage in the mouse independently of the interleukin-1 type I receptor. J Neurosci 22:38–43

    CAS  PubMed  Google Scholar 

  42. Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40:140–155

    Article  PubMed  Google Scholar 

  43. Zheng Z, Yenari MA (2004) Post-ischemic inflammation: molecular mechanisms and therapeutic implications. Neurol Res 26:884–892

    Article  CAS  PubMed  Google Scholar 

  44. Chong ZZ, Li F, Maiese K (2005) Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol 75:207–246

    Article  CAS  PubMed  Google Scholar 

  45. Eggen BJL, Raj D, Hanisch UK, Boddeke HW (2013) Microglial phenotype and adaptation. J Neuroimmune Pharmacol 8:807–823

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The studies in our laboratories were supported by the General Grant of National Natural Science Foundation of China (NSFC) (81070930, 81471108, 31271132, 31371092), National 973 Programs (2011CB510004, 2014CB541604), the Competitive Earmarked Grants of The Hong Kong Research Grants Council (GRF 466713, 14106914), and Key Project Grant of NSFC (31330035). We thank Professor Peng Xie of the Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China for the human oligodendroglia cells.

Conflict of Interest

The authors declare that they have no competing interests.

Author Contributions

Y.L., Y. K., and Z.M.Q. conceived and supervised the study; X.M.W. and Q.Q.L. performed the experiments; Y.L. and X.M.W. contributed to the analysis of data. Y. K. and Z.M.Q. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong-Ming Qian or Ya Ke.

Additional information

Xiao-Mei Wu and Yong Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, XM., Liu, Y., Qian, ZM. et al. CX3CL1/CX3CR1 Axis Plays a Key Role in Ischemia-Induced Oligodendrocyte Injury via p38MAPK Signaling Pathway. Mol Neurobiol 53, 4010–4018 (2016). https://doi.org/10.1007/s12035-015-9339-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9339-3

Keywords

Navigation