Skip to main content

Advertisement

Log in

Up-Regulation of Oligodendrocyte Lineage Markers in the Cerebellum of Autistic Patients: Evidence from Network Analysis of Gene Expression

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Autism is a neurodevelopmental disorder manifested by impaired social interaction, deficits in communication skills, restricted interests, and repetitive behaviors. In neurodevelopmental, neurodegenerative, and psychiatric disorders, glial cells undergo morphological, biochemical, and functional rearrangements, which are critical for neuronal development, neurotransmission, and synaptic connectivity. Cerebellar function is not limited to motor coordination but also contributes to cognition and may be affected in autism. Oligodendrocytes and specifically oligodendroglial precursors are highly susceptible to oxidative stress and excitotoxic insult. In the present study, we searched for evidence for developmental oligodendropathy in the context of autism by performing a network analysis of gene expression of cerebellar tissue. We created an in silico network model (OLIGO) showing the landscape of interactions between oligodendrocyte markers and demonstrated that more than 50 % (16 out of 30) of the genes within this model displayed significant changes of expression (corrected p value <0.05) in the cerebellum of autistic patients. In particular, we found up-regulation of OLIG2-, MBP-, OLIG1-, and MAG-specific oligodendrocyte markers. We postulate that aberrant expression of oligodendrocyte-specific genes, potentially related to changes in oligodendrogenesis, may contribute to abnormal cerebellar development, impaired myelination, and anomalous synaptic connectivity in autism spectrum disorders (ASD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

APP:

amyloid protein precursor

ASD:

autism spectrum disorders

CNS:

central nervous system

FDR:

false discovery rate

OL:

oligodendrocyte

OPCs:

oligodendroglial precursors.

References

  1. Blumberg SJ, Bramlett MD, Kogan MD, Schieve LA, Jones JR (2013) Changes in prevalence of parent-reported autism spectrum disorder in school-aged U.S. children: 2007 to 2011–2012. Natl Health Stat Rep 65:1–12

    Google Scholar 

  2. Zeidán-Chuliá F, Gursoy UK, Könönen E, Gottfried C (2011) A dental look at the autistic patient through orofacial pain. Acta Odontol Scand 69(4):193–200

    Article  PubMed  Google Scholar 

  3. Zeidán-Chuliá F, Rybarczyk-Filho JL, Salmina AB, de Oliveira BH, Noda M, Moreira JC (2013) Exploring the multifactorial nature of autism through computational systems biology: calcium and the Rho GTPase RAC1 under the spotlight. Neruomol Med 15(2):364–383

    Article  Google Scholar 

  4. Chauhan A, Chauhan V (2006) Oxidative stress in autism. Pathophysiology 13(3):171–181

    Article  CAS  PubMed  Google Scholar 

  5. Zeidán-Chuliá F, Salmina AB, Malinovskaya NA, Noda M, Verkhratsky A, Moreira JC (2014) The glial perspective of autism spectrum disorders. Neurosci Biobehav Rev 38:160–172

    Article  PubMed  Google Scholar 

  6. Zeidán-Chuliá F, de Oliveira BH, Salmina AB, Casanova MF, Gelain DP, Noda M, Verkhratsky A, Moreira JC (2014) Altered expression of Alzheimer’s disease-related genes in the cerebellum of autistic patients: a model for disrupted brain connectome and therapy. Cell Death Dis 5:e1250

    Article  PubMed  PubMed Central  Google Scholar 

  7. Casanova MF, Buxhoeveden DP, Brown C (2002) Clinical and macroscopic correlates of minicolumnar pathology in autism. J Child Neurol 17(9):692–695

    Article  PubMed  Google Scholar 

  8. Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Marchi E, Ma SY, Chauhan A et al (2010) The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 119(6):755–770

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jeste SS, Geschwind DH (2014) Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nat Rev Neurol 10(2):74–81

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shen MD, Nordahl CW, Young GS, Wootton-Gorges SL, Lee A, Liston SE, Harrington KR, Ozonoff S et al (2013) Early brain enlargement and elevated extra-axial fluid in infants who develop autism spectrum disorder. Brain 136(Pt 9):2825–2835

    Article  PubMed  PubMed Central  Google Scholar 

  11. Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tique ZD, Chisum HJ, Moses P et al (2001) Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 57(2):245–254

    Article  CAS  PubMed  Google Scholar 

  12. Amaral DG, Schumann CM, Nordahl CW (2008) Neuroanatomy of autism. Trends Neurosci 31(3):137–145

    Article  CAS  PubMed  Google Scholar 

  13. Courchesne E, Pierce K (2005) Why the frontal cortex in autism might be talking only to itself: local overconnectivity but long-distance disconnection. Curr Opin Neurobiol 15(2):225–230

    Article  CAS  PubMed  Google Scholar 

  14. Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, Chauhan A, Chauhan V et al (2012) Consensus paper: pathological role of the cerebellum in autism. Cerebellum 11(3):777–807

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hardan AY, Minshew NJ, Harenski K, Keshavan MS (2001) Posterior fossa magnetic resonance imaging in autism. J Am Acad Child Adolesc Psychiatry 40(6):666–672

    Article  CAS  PubMed  Google Scholar 

  16. Courchesne E (1997) Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Curr Opin Neurobiol 7(2):269–278

    Article  CAS  PubMed  Google Scholar 

  17. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M et al (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(Database issue):D561–D568

    Article  CAS  PubMed  Google Scholar 

  18. Hooper SD, Bork P (2005) Medusa: a simple tool for interaction graph analysis. Bioinformatics 21(24):4432–4433

    Article  CAS  PubMed  Google Scholar 

  19. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81(2):871–927

    CAS  PubMed  Google Scholar 

  20. Deng W, Poretz RD (2003) Oligodendroglia in developmental neurotoxicity. Neurotoxicology 24(2):161–178

    Article  CAS  PubMed  Google Scholar 

  21. Ginsberg MR, Rubin RA, Falcone T, Ting AH, Natowicz MR (2012) Brain transcriptional and epigenetic associations with autism. PLoS ONE 7(9):e44736

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pawitan Y, Michiels S, Koscielny S, Gusnanto A, Ploner A (2005) False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics 21(13):3017–3024

    Article  CAS  PubMed  Google Scholar 

  24. Walhovd KB, Johansen-Berg H, Karadottir RT (2014) Unraveling the secrets of white matter--Bridging the gap between cellular, animal and human imaging studies. Neuroscience 276:2–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mathis C, Collin L, Borrelli E (2003) Oligodendrocyte ablation impairs cerebellum development. Development 130(19):4709–4718

    Article  CAS  PubMed  Google Scholar 

  26. El Waly B, Macchi M, Cayre M, Durbec P (2014) Oligodendrogenesis in the normal and pathological central nervous system. Front Neurosci 8:145

    PubMed  PubMed Central  Google Scholar 

  27. Verkhratsky A, Kirchhoff F (2007) NMDA receptors in glia. Neuroscientist 13(1):28–37

    Article  CAS  PubMed  Google Scholar 

  28. Thorburne SK, Juurlink BH (1996) Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J Neurochem 67(3):1014–1022

    Article  CAS  PubMed  Google Scholar 

  29. Back SA, Gan X, Li Y, Rosenberg PA, Volpe JJ (1998) Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. J Neurosci 18(16):6241–6253

    CAS  PubMed  Google Scholar 

  30. Butts BD, Houde C, Mehmet H (2008) Maturation-dependent sensitivity of oligodendrocyte lineage cells to apoptosis: implications for normal development and disease. Cell Death Differ 15(7):1178–1186

    Article  CAS  PubMed  Google Scholar 

  31. Akshoomoff N, Lord C, Lincoln AJ, Courchesne RY, Carper RA, Townsend J, Courchesne E (2004) Outcome classification of preschool children with autism spectrum disorders using MRI brain measures. J Am Acad Child Adolesc Psychiatry 43(3):349–357

    Article  PubMed  Google Scholar 

  32. Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD (1993) Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262(5134):695–700

    Article  CAS  PubMed  Google Scholar 

  33. Hendry J, De Vito T, Gelman N, Densmore M, Rajakumar N, Pavlosky W, Williamson PC, Thompson PM et al (2006) White matter abnormalities in autism detected through transverse relaxation time imaging. Neuroimage 29(4):1049–1057

    Article  PubMed  Google Scholar 

  34. Carmody DP, Lewis M (2010) Regional white matter development in children with autism spectrum disorders. Dev Psychobiol 52(8):755–763

    Article  PubMed  Google Scholar 

  35. Gozzi M, Nielson DM, Lenroot RK, Ostuni JL, Luckenbaugh DA, Thurm AE, Giedd JN, Swedo SE (2012) A magnetization transfer imaging study of corpus callosum myelination in young children with autism. Biol Psychiatry 72(3):215–220

    Article  PubMed  PubMed Central  Google Scholar 

  36. Libbey JE, Sweeten TL, MacMahon WM, Fujinami RS (2005) Autistic disorder and viral infections. J Neurovirol 11(1):1–10

    Article  PubMed  Google Scholar 

  37. Bell ES, Park M (2012) Models of crk adaptor proteins in cancer. Genes Cancer 3(5–6):341–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, Inema I, Miller SE et al (2014) Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344(6183):1252304

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

FZC holds a PNPD postdoctoral position (Programa de Pós Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul) funded by CAPES. AV was supported in part by the grant (agreement from 27 August 2013 No. 02.B.49.21.0003) between The Ministry of Education and Science of the Russian Federation and Lobachevsky State University of Nizhny Novgorod and by the grant of the Russian Scientific Foundation No.14-15-00633.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fares Zeidán-Chuliá.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeidán-Chuliá, F., de Oliveira, BH.N., Casanova, M.F. et al. Up-Regulation of Oligodendrocyte Lineage Markers in the Cerebellum of Autistic Patients: Evidence from Network Analysis of Gene Expression. Mol Neurobiol 53, 4019–4025 (2016). https://doi.org/10.1007/s12035-015-9351-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9351-7

Keywords

Navigation