Skip to main content

Advertisement

Log in

Organotypic Hippocampal Slices as Models for Stroke and Traumatic Brain Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Organotypic hippocampal slice cultures (OHSCs) have been used as a powerful ex vivo model for decades. They have been used successfully in studies of neuronal death, microglial activation, mossy fiber regeneration, neurogenesis, and drug screening. As a pre-animal experimental phase for physiologic and pathologic brain research, OHSCs offer outcomes that are relatively closer to those of whole-animal studies than outcomes obtained from cell culture in vitro. At the same time, mechanisms can be studied more precisely in OHSCs than they can be in vivo. Here, we summarize stroke and traumatic brain injury research that has been carried out in OHSCs and review classic experimental applications of OHSCs and its limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cho S, Wood A, Bowlby MR (2007) Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Curr Neuropharmacol 5(1):19–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gogolla N, Galimberti I, DePaola V, Caroni P (2006) Staining protocol for organotypic hippocampal slice cultures. Nat Protoc 1(5):2452–2456. doi:10.1038/nprot.2006.180

    Article  CAS  PubMed  Google Scholar 

  3. Birgbauer E, Rao TS, Webb M (2004) Lysolecithin induces demyelination in vitro in a cerebellar slice culture system. J Neurosci Res 78(2):157–166. doi:10.1002/jnr.20248

    Article  CAS  PubMed  Google Scholar 

  4. Krassioukov AV, Ackery A, Schwartz G, Adamchik Y, Liu Y, Fehlings MG (2002) An in vitro model of neurotrauma in organotypic spinal cord cultures from adult mice. Brain Res Brain Res Protoc 10(2):60–68

    Article  PubMed  Google Scholar 

  5. Newell DW, Barth A, Papermaster V, Malouf AT (1995) Glutamate and non-glutamate receptor mediated toxicity caused by oxygen and glucose deprivation in organotypic hippocampal cultures. J Neurosci 15(11):7702–7711

    CAS  PubMed  Google Scholar 

  6. Phillis JW, Smith-Barbour M, Perkins LM, O’Regan MH (1994) Characterization of glutamate, aspartate, and GABA release from ischemic rat cerebral cortex. Brain Res Bull 34(5):457–466

    Article  CAS  PubMed  Google Scholar 

  7. Rytter A, Cronberg T, Asztely F, Nemali S, Wieloch T (2003) Mouse hippocampal organotypic tissue cultures exposed to in vitro "ischemia" show selective and delayed CA1 damage that is aggravated by glucose. J Cereb Blood Flow Metab 23(1):23–33

    Article  CAS  PubMed  Google Scholar 

  8. Molnar Z, Blakemore C (1999) Development of signals influencing the growth and termination of thalamocortical axons in organotypic culture. Exp Neurol 156(2):363–393. doi:10.1006/exnr.1999.7032

    Article  CAS  PubMed  Google Scholar 

  9. Gong Q, Liu WL, Srodon M, Foster TD, Shipley MT (1996) Olfactory epithelial organotypic slice cultures: a useful tool for investigating olfactory neural development. Int J Dev Neurosci 14(7–8):841–852

    Article  CAS  PubMed  Google Scholar 

  10. Bahr BA (1995) Long-term hippocampal slices: a model system for investigating synaptic mechanisms and pathologic processes. J Neurosci Res 42(3):294–305. doi:10.1002/jnr.490420303

    Article  CAS  PubMed  Google Scholar 

  11. De Simoni A, Griesinger CB, Edwards FA (2003) Development of rat CA1 neurones in acute versus organotypic slices: role of experience in synaptic morphology and activity. J Physiol 550(Pt 1):135–147. doi:10.1113/jphysiol.2003.039099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Rivera S, Gold SJ, Gall CM (1994) Interleukin-1 beta increases basic fibroblast growth factor mRNA expression in adult rat brain and organotypic hippocampal cultures. Brain Res Mol Brain Res 27(1):12–26

    Article  CAS  PubMed  Google Scholar 

  13. De Simoni A, Yu LM (2006) Preparation of organotypic hippocampal slice cultures: interface method. Nat Protoc 1(3):1439–1445. doi:10.1038/nprot.2006.228

    Article  PubMed  CAS  Google Scholar 

  14. Cooke SF, Bliss TV (2005) Long-term potentiation and cognitive drug discovery. Curr Opin Investig Drugs 6(1):25–34

    CAS  PubMed  Google Scholar 

  15. Finley M, Fairman D, Liu D, Li P, Wood A, Cho SG (2004) Functional validation of adult hippocampal organotypic cultures as an in vitro model of brain injury. Brain Research 1001 (1–2):125–132. doi:10.1016/j.brainres.2003.12.009

  16. Xiang Z, Hrabetova S, Moskowitz SI, Casaccia-Bonnefil P, Young SR, Nimmrich VC, Tiedge H, Einheber S et al (2000) Long-term maintenance of mature hippocampal slices in vitro. J Neurosci Methods 98(2):145–154

    Article  CAS  PubMed  Google Scholar 

  17. Bai JZ, Lipski J (2014) Involvement of TRPV4 channels in Abeta(40)-induced hippocampal cell death and astrocytic Ca(2+) signalling. Neurotoxicology 41:64–72. doi:10.1016/j.neuro.2014.01.001

    Article  CAS  PubMed  Google Scholar 

  18. Gahwiler BH (1981) Organotypic monolayer cultures of nervous tissue. J Neurosci Methods 4(4):329–342

    Article  CAS  PubMed  Google Scholar 

  19. Hogue MJ (1947) Human fetal brain cells in tissue cultures; their identification and motility. J Exp Zool 106(1):85–107

    Article  CAS  PubMed  Google Scholar 

  20. Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37(2):173–182

    Article  CAS  PubMed  Google Scholar 

  21. Gerace E, Landucci E, Scartabelli T, Moroni F, Pellegrini-Giampietro DE (2012) Rat hippocampal slice culture models for the evaluation of neuroprotective agents. Methods Mol Biol 846:343–354. doi:10.1007/978-1-61779-536-7_29

    Article  CAS  PubMed  Google Scholar 

  22. Hellwig S, Hack I, Kowalski J, Brunne B, Jarowyj J, Unger A, Bock HH, Junghans D et al (2011) Role for Reelin in neurotransmitter release. J Neurosci 31(7):2352–2360. doi:10.1523/JNEUROSCI.3984-10.2011

    Article  CAS  PubMed  Google Scholar 

  23. Yoon JJ, Green CR, O’Carroll SJ, Nicholson LF (2010) Dose-dependent protective effect of connexin43 mimetic peptide against neurodegeneration in an ex vivo model of epileptiform lesion. Epilepsy Res 92(2–3):153–162. doi:10.1016/j.eplepsyres.2010.08.014

    Article  CAS  PubMed  Google Scholar 

  24. Kim HA, Lee KH, Lee BH (2014) Neuroprotective effect of melatonin against kainic acid-induced oxidative injury in hippocampal slice culture of rats. Int J Mol Sci 15(4):5940–5951. doi:10.3390/ijms15045940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lamprecht MR, Morrison B 3rd (2014) GPR30 activation is neither necessary nor sufficient for acute neuroprotection by 17beta-estradiol after an ischemic injury in organotypic hippocampal slice cultures. Brain Res 1563:131–137. doi:10.1016/j.brainres.2014.03.037

    Article  CAS  PubMed  Google Scholar 

  26. Horn AP, Bernardi A, Luiz Frozza R, Grudzinski PB, Hoppe JB, de Souza LF, Chagastelles P, de Souza Wyse AT et al (2011) Mesenchymal stem cell-conditioned medium triggers neuroinflammation and reactive species generation in organotypic cultures of rat hippocampus. Stem Cells Dev 20(7):1171–1181. doi:10.1089/scd.2010.0157

    Article  CAS  PubMed  Google Scholar 

  27. Van Kanegan MJ, He DN, Dunn DE, Yang P, Newman RA, West AE, Lo DC (2014) BDNF mediates neuroprotection against oxygen-glucose deprivation by the cardiac glycoside oleandrin. J Neurosci 34(3):963–968. doi:10.1523/JNEUROSCI.2700-13.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Chip S, Nitsch C, Wellmann S, Kapfhammer JP (2013) Subfield-specific neurovascular remodeling in the entorhino-hippocampal-organotypic slice culture as a response to oxygen-glucose deprivation and excitotoxic cell death. J Cereb Blood Flow Metab 33(4):508–518. doi:10.1038/jcbfm.2012.190

    Article  CAS  PubMed  Google Scholar 

  29. Petito CK, Feldmann E, Pulsinelli WA, Plum F (1987) Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology 37(8):1281–1286

    Article  CAS  PubMed  Google Scholar 

  30. Nitsch C, Goping G, Klatzo I (1989) Preservation of GABAergic perikarya and boutons after transient ischemia in the gerbil hippocampal CA1 field. Brain Res 495(2):243–252

    Article  CAS  PubMed  Google Scholar 

  31. Kirino T, Tamura A, Sano K (1984) Delayed neuronal death in the rat hippocampus following transient forebrain ischemia. Acta Neuropathol 64(2):139–147

    Article  CAS  PubMed  Google Scholar 

  32. Hassen GW, Tian D, Ding D, Bergold PJ (2004) A new model of ischemic preconditioning using young adult hippocampal slice cultures. Brain Res Brain Res Protoc 13(3):135–143. doi:10.1016/j.brainresprot.2004.03.004

    Article  CAS  PubMed  Google Scholar 

  33. Feiner JR, Bickler PE, Estrada S, Donohoe PH, Fahlman CS, Schuyler JA (2005) Mild hypothermia, but not propofol, is neuroprotective in organotypic hippocampal cultures. Anesth Analg 100(1):215–225. doi:10.1213/01.ANE.0000142129.17005.73

    Article  CAS  PubMed  Google Scholar 

  34. Ko H, Zeller M, Gabriel S, Graulich J, Heinemann U, Obladen M (2001) Mild postischemic hypothermia is neuroprotective in the immature rat neocortex slice. Brain Res 894(2):297–300

    Article  CAS  PubMed  Google Scholar 

  35. Sarnowska A, Braun H, Sauerzweig S, Reymann KG (2009) The neuroprotective effect of bone marrow stem cells is not dependent on direct cell contact with hypoxic injured tissue. Exp Neurol 215(2):317–327. doi:10.1016/j.expneurol.2008.10.023

    Article  CAS  PubMed  Google Scholar 

  36. Adamchik Y, Frantseva MV, Weisspapir M, Carlen PL, Perez Velazquez JL (2000) Methods to induce primary and secondary traumatic damage in organotypic hippocampal slice cultures. Brain Res Brain Res Protoc 5(2):153–158

    Article  CAS  PubMed  Google Scholar 

  37. Tasker RC, Coyle JT, Vornov JJ (1992) The regional vulnerability to hypoglycemia-induced neurotoxicity in organotypic hippocampal culture: protection by early tetrodotoxin or delayed MK-801. J Neurosci 12(11):4298–4308

    CAS  PubMed  Google Scholar 

  38. Hughes RH, Silva VA, Ahmed I, Shreiber DI, Morrison B 3rd (2014) Neuroprotection by genipin against reactive oxygen and reactive nitrogen species-mediated injury in organotypic hippocampal slice cultures. Brain Res 1543:308–314. doi:10.1016/j.brainres.2013.11.020

    Article  CAS  PubMed  Google Scholar 

  39. Ikeda-Matsuo Y, Tanji H, Ota A, Hirayama Y, Uematsu S, Akira S, Sasaki Y (2010) Microsomal prostaglandin E synthase-1 contributes to ischaemic excitotoxicity through prostaglandin E2 EP3 receptors. Br J Pharmacol 160(4):847–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fujimoto S, Katsuki H, Kume T, Akaike A (2006) Thrombin-induced delayed injury involves multiple and distinct signaling pathways in the cerebral cortex and the striatum in organotypic slice cultures. Neurobiol Dis 22 (1):130–142. doi:10.1016/j.nbd.2005.10.008

  41. Strassburger M, Braun H, Reymann KG (2008) Anti-inflammatory treatment with the p38 mitogen-activated protein kinase inhibitor SB239063 is neuroprotective, decreases the number of activated microglia and facilitates neurogenesis in oxygen-glucose-deprived hippocampal slice cultures. Eur J Pharmacol 592(1–3):55–61. doi:10.1016/j.ejphar.2008.06.099

    Article  CAS  PubMed  Google Scholar 

  42. Jung YJ, Suh EC, Lee KE (2012) Oxygen/Glucose Deprivation and Reperfusion Cause Modifications of Postsynaptic Morphology and Activity in the CA3 Area of Organotypic Hippocampal Slice Cultures. Korean J Physiol Pharmacol 16(6):423–429. doi:10.4196/kjpp.2012.16.6.423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ahlgren H, Henjum K, Ottersen OP, Runden-Pran E (2011) Validation of organotypical hippocampal slice cultures as an ex vivo model of brain ischemia: different roles of NMDA receptors in cell death signalling after exposure to NMDA or oxygen and glucose deprivation. Cell Tissue Res 345(3):329–341. doi:10.1007/s00441-011-1218-2

    Article  CAS  PubMed  Google Scholar 

  44. Bernardi A, Frozza RL, Horn AP, Campos MM, Calixto JB, Salbego C, Pohlmann AR, Guterres SS et al (2010) Protective effects of indomethacin-loaded nanocapsules against oxygen-glucose deprivation in organotypic hippocampal slice cultures: involvement of neuroinflammation. Neurochem Int 57(6):629–636. doi:10.1016/j.neuint.2010.07.012

    Article  CAS  PubMed  Google Scholar 

  45. Bickler PE, Fahlman CS (2009) Expression of signal transduction genes differs after hypoxic or isoflurane preconditioning of rat hippocampal slice cultures. Anesthesiology 111(2):258–266. doi:10.1097/ALN.0b013e3181a8647f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cui HS, Matsumoto K, Murakami Y, Hori H, Zhao Q, Obi R (2009) Berberine exerts neuroprotective actions against in vitro ischemia-induced neuronal cell damage in organotypic hippocampal slice cultures: involvement of B-cell lymphoma 2 phosphorylation suppression. Biol Pharm Bull 32(1):79–85

    Article  CAS  PubMed  Google Scholar 

  47. Koch H, Huh SE, Elsen FP, Carroll MS, Hodge RD, Bedogni F, Turner MS, Hevner RF et al (2010) Prostaglandin E2-induced synaptic plasticity in neocortical networks of organotypic slice cultures. J Neurosci 30(35):11678–11687. doi:10.1523/JNEUROSCI.4665-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu Z, Elkin BS, Morrison B (2009) Quantification of functional alterations after in vitro traumatic brain injury. Conf Proc IEEE Eng Med Biol Soc 2009:1135–1138. doi:10.1109/IEMBS.2009.5332381

    PubMed  Google Scholar 

  49. Yu Z, Graudejus O, Lacour SP, Wagner S, Morrison B 3rd (2009) Neural sensing of electrical activity with stretchable microelectrode arrays. Conf Proc IEEE Eng Med Biol Soc 2009:4210–4213. doi:10.1109/IEMBS.2009.5333791

    PubMed  Google Scholar 

  50. Yu Z, Graudejus O, Tsay C, Lacour SP, Wagner S, Morrison B 3rd (2009) Monitoring hippocampus electrical activity in vitro on an elastically deformable microelectrode array. J Neurotrauma 26(7):1135–1145. doi:10.1089/neu.2008.0810

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ziemka-Nalecz M, Stanaszek L, Zalewska T (2013) Oxygen-glucose deprivation promotes gliogenesis and microglia activation in organotypic hippocampal slice culture: involvement of metalloproteinases. Acta Neurobiol Exp (Wars) 73(1):130–142

    Google Scholar 

  52. Sierra A, Encinas JM, Deudero JJ, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, Tsirka SE, Maletic-Savatic M (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7(4):483–495. doi:10.1016/j.stem.2010.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Belmadani A, Tran PB, Ren D, Miller RJ (2006) Chemokines regulate the migration of neural progenitors to sites of neuroinflammation. J Neurosci 26(12):3182–3191. doi:10.1523/JNEUROSCI.0156-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Avaliani N, Sorensen AT, Ledri M, Bengzon J, Koch P, Brustle O, Deisseroth K, Andersson M et al (2014) Optogenetics reveal delayed afferent synaptogenesis on grafted human-induced pluripotent stem cell-derived neural progenitors. Stem Cells 32(12):3088–3098. doi:10.1002/stem.1823

    Article  CAS  PubMed  Google Scholar 

  55. Maisano X, Litvina E, Tagliatela S, Aaron GB, Grabel LB, Naegele JR (2012) Differentiation and functional incorporation of embryonic stem cell-derived GABAergic interneurons in the dentate gyrus of mice with temporal lobe epilepsy. J Neurosci 32(1):46–61. doi:10.1523/JNEUROSCI.2683-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shetty AK, Rao MS, Hattiangady B (2008) Behavior of hippocampal stem/progenitor cells following grafting into the injured aged hippocampus. J Neurosci Res 86(14):3062–3074. doi:10.1002/jnr.21764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Morin-Brureau M, De Bock F, Lerner-Natoli M (2013) Organotypic brain slices: a model to study the neurovascular unit micro-environment in epilepsies. Fluids Barriers CNS 10(1):11. doi:10.1186/2045-8118-10-11

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zehendner CM, White R, Hedrich J, Luhmann HJ (2014) A neurovascular blood–brain barrier in vitro model. Methods Mol Biol 1135:403–413. doi:10.1007/978-1-4939-0320-7_33

    Article  CAS  PubMed  Google Scholar 

  59. Justine A, Paula P, Luce VE, Laurence R (2014) Regional and time-dependent neuroprotective effect of hypothermia following oxygen-glucose deprivation. Hippocampus. doi:10.1002/hipo.22364

    Google Scholar 

  60. Gregersen M, Lee DH, Gabatto P, Bickler PE (2013) Limitations of mild, moderate, and profound Hypothermia in protecting developing hippocampal neurons after simulated ischemia. Ther Hypothermia Temp Manag 3(4):178–188. doi:10.1089/ther.2013.0017

    Article  PubMed  PubMed Central  Google Scholar 

  61. Montero M, Gonzalez B, Zimmer J (2009) Immunotoxic depletion of microglia in mouse hippocampal slice cultures enhances ischemia-like neurodegeneration. Brain Res 1291:140–152. doi:10.1016/j.brainres.2009.06.097

    Article  CAS  PubMed  Google Scholar 

  62. Neumann J, Gunzer M, Gutzeit HO, Ullrich O, Reymann KG, Dinkel K (2006) Microglia provide neuroprotection after ischemia. Faseb J 20(6):714–716. doi:10.1096/fj.05-4882fje

    CAS  PubMed  Google Scholar 

  63. Hong J, Cho IH, Kwak KI, Suh EC, Seo J, Min HJ, Choi SY, Kim CH et al (2010) Microglial Toll-like receptor 2 contributes to kainic acid-induced glial activation and hippocampal neuronal cell death. J Biol Chem 285(50):39447–39457. doi:10.1074/jbc.M110.132522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kovacs R, Rabanus A, Otahal J, Patzak A, Kardos J, Albus K, Heinemann U, Kann O (2009) Endogenous nitric oxide is a key promoting factor for initiation of seizure-like events in hippocampal and entorhinal cortex slices. J Neurosci 29(26):8565–8577. doi:10.1523/JNEUROSCI.5698-08.2009

    Article  CAS  PubMed  Google Scholar 

  65. Peng Y, Zhang QL, Xu D, Wang YP, Qin XY (2010) Small hairpin RNA interference of the Nogo receptor inhibits oxygen-glucose deprivation-induced damage in rat hippocampal slice cultures. Neuropathology 30(6):565–573. doi:10.1111/j.1440-1789.2010.01102.x

    Article  PubMed  Google Scholar 

  66. Noraberg J, Poulsen FR, Blaabjerg M, Kristensen BW, Bonde C, Montero M, Meyer M, Gramsbergen JB et al (2005) Organotypic hippocampal slice cultures for studies of brain damage, neuroprotection and neurorepair. Curr Drug Targets CNS Neurol Disord 4(4):435–452

    Article  CAS  PubMed  Google Scholar 

  67. Pringle AK, Benham CD, Sim L, Kennedy J, Iannotti F, Sundstrom LE (1996) Selective N-type calcium channel antagonist omega conotoxin MVIIA is neuroprotective against hypoxic neurodegeneration in organotypic hippocampal-slice cultures. Stroke 27(11):2124–2130

    Article  CAS  PubMed  Google Scholar 

  68. Ray AM, Owen DE, Evans ML, Davis JB, Benham CD (2000) Caspase inhibitors are functionally neuroprotective against oxygen glucose deprivation induced CA1 death in rat organotypic hippocampal slices. Brain Res 867(1–2):62–69

    Article  CAS  PubMed  Google Scholar 

  69. Cho S, Liu D, Fairman D, Li P, Jenkins L, McGonigle P, Wood A (2004) Spatiotemporal evidence of apoptosis-mediated ischemic injury in organotypic hippocampal slice cultures. Neurochem Int 45(1):117–127. doi:10.1016/j.neuint.2003.11.012

    Article  CAS  PubMed  Google Scholar 

  70. Meli E, Pangallo M, Baronti R, Chiarugi A, Cozzi A, Pellegrini-Giampietro DE, Moroni F (2003) Poly(ADP-ribose) polymerase as a key player in excitotoxicity and post-ischemic brain damage. Toxicol Lett 139(2–3):153–162

    Article  CAS  PubMed  Google Scholar 

  71. Laake JH, Haug FM, Wieloch T, Ottersen OP (1999) A simple in vitro model of ischemia based on hippocampal slice cultures and propidium iodide fluorescence. Brain Res Brain Res Protoc 4(2):173–184

    Article  CAS  PubMed  Google Scholar 

  72. Runden E, Seglen PO, Haug FM, Ottersen OP, Wieloch T, Shamloo M, Laake JH (1998) Regional selective neuronal degeneration after protein phosphatase inhibition in hippocampal slice cultures: evidence for a MAP kinase- dependent mechanism. J Neurosci 18(18):7296–7305

    CAS  PubMed  Google Scholar 

  73. Moroni F, Formentini L, Gerace E, Camaioni E, Pellegrini-Giampietro DE, Chiarugi A, Pellicciari R (2009) Selective PARP-2 inhibitors increase apoptosis in hippocampal slices but protect cortical cells in models of post-ischaemic brain damage. Br J Pharmacol 157(5):854–862. doi:10.1111/j.1476-5381.2009.00232.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Moroni F, Meli E, Peruginelli F, Chiarugi A, Cozzi A, Picca R, Romagnoli P, Pellicciari R et al (2001) Poly(ADP-ribose) polymerase inhibitors attenuate necrotic but not apoptotic neuronal death in experimental models of cerebral ischemia. Cell Death Differ 8(9):921–932. doi:10.1038/sj.cdd.4400884

    Article  CAS  PubMed  Google Scholar 

  75. Ohashi H, Maruyama T, Higashi-Matsumoto H, Nomoto T, Nishimura S, Takeuchi Y (2002) A novel binding assay for metabotropic glutamate receptors using [3H] L-quisqualic acid and recombinant receptors. Z Naturforsch C 57(3–4):348–355

    CAS  PubMed  Google Scholar 

  76. Bruce AJ, Sakhi S, Schreiber SS, Baudry M (1995) Development of kainic acid and N-methyl-D-aspartic acid toxicity in organotypic hippocampal cultures. Exp Neurol 132(2):209–219

    Article  CAS  PubMed  Google Scholar 

  77. Kristensen BW, Noraberg J, Thiebaud P, Koudelka-Hep M, Zimmer J (2001) Biocompatibility of silicon-based arrays of electrodes coupled to organotypic hippocampal brain slice cultures. Brain Res 896(1–2):1–17

    Article  CAS  PubMed  Google Scholar 

  78. Rimvall K, Keller F, Waser PG (1987) Selective kainic acid lesions in cultured explants of rat hippocampus. Acta Neuropathol 74(2):183–190

    Article  CAS  PubMed  Google Scholar 

  79. Jakobsen B, Tasker A, Zimmer J (2002) Domoic acid neurotoxicity in hippocampal slice cultures. Amino Acids 23(1–3):37–44. doi:10.1007/s00726-001-0107-5

    Article  CAS  PubMed  Google Scholar 

  80. Holopainen IE, Jarvela J, Lopez-Picon FR, Pelliniemi LJ, Kukko-Lukjanov TK (2004) Mechanisms of kainate-induced region-specific neuronal death in immature organotypic hippocampal slice cultures. Neurochem Int 45(1):1–10. doi:10.1016/j.neuint.2004.01.005

    Article  CAS  PubMed  Google Scholar 

  81. Gatherer M, Sundstrom LE (1998) Mossy fibre innervation is not required for the development of kainic acid toxicity in organotypic hippocampal slice cultures. Neurosci Lett 253(2):119–122

    Article  CAS  PubMed  Google Scholar 

  82. Newell DW, Malouf AT, Franck JE (1990) Glutamate-mediated selective vulnerability to ischemia is present in organotypic cultures of hippocampus. Neurosci Lett 116(3):325–330

    Article  CAS  PubMed  Google Scholar 

  83. Vornov JJ, Tasker RC, Coyle JT (1994) Delayed protection by MK-801 and tetrodotoxin in a rat organotypic hippocampal culture model of ischemia. Stroke 25(2):457–464, discussion 464–455

    Article  CAS  PubMed  Google Scholar 

  84. Barth A, Barth L, Morrison RS, Newell DW (1996) bFGF enhances the protective effects of MK-801 against ischemic neuronal injury in vitro. Neuroreport 7(9):1461–1464

    Article  CAS  PubMed  Google Scholar 

  85. Barth A, Barth L, Newell DW (1996) Combination therapy with MK-801 and alpha-phenyl-tert-butyl-nitrone enhances protection against ischemic neuronal damage in organotypic hippocampal slice cultures. Exp Neurol 141(2):330–336. doi:10.1006/exnr.1996.0168

    Article  CAS  PubMed  Google Scholar 

  86. Abdel-Hamid KM, Tymianski M (1997) Mechanisms and effects of intracellular calcium buffering on neuronal survival in organotypic hippocampal cultures exposed to anoxia/aglycemia or to excitotoxins. J Neurosci 17(10):3538–3553

    CAS  PubMed  Google Scholar 

  87. Kristensen BW, Noraberg J, Zimmer J (2001) Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures. Brain Res 917(1):21–44

    Article  CAS  PubMed  Google Scholar 

  88. Wahl P, Schousboe A, Honore T, Drejer J (1989) Glutamate-induced increase in intracellular Ca2+ in cerebral cortex neurons is transient in immature cells but permanent in mature cells. J Neurochem 53(4):1316–1319

    Article  CAS  PubMed  Google Scholar 

  89. Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354(6348):31–37. doi:10.1038/354031a0

    Article  CAS  PubMed  Google Scholar 

  90. Jonas P, Burnashev N (1995) Molecular mechanisms controlling calcium entry through AMPA-type glutamate receptor channels. Neuron 15(5):987–990

    Article  CAS  PubMed  Google Scholar 

  91. Sommer B, Keinanen K, Verdoorn TA, Wisden W, Burnashev N, Herb A, Kohler M, Takagi T et al (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249(4976):1580–1585

    Article  CAS  PubMed  Google Scholar 

  92. Bernard A, Ferhat L, Dessi F, Charton G, Represa A, Ben-Ari Y, Khrestchatisky M (1999) Q/R editing of the rat GluR5 and GluR6 kainate receptors in vivo and in vitro: evidence for independent developmental, pathological and cellular regulation. Eur J Neurosci 11(2):604–616

    Article  CAS  PubMed  Google Scholar 

  93. Wisden W, Seeburg PH (1993) Mammalian ionotropic glutamate receptors. Curr Opin Neurobiol 3(3):291–298

    Article  CAS  PubMed  Google Scholar 

  94. Tanabe M, Gahwiler BH, Gerber U (1998) L-Type Ca2+ channels mediate the slow Ca2+−dependent afterhyperpolarization current in rat CA3 pyramidal cells in vitro. J Neurophysiol 80(5):2268–2273

    CAS  PubMed  Google Scholar 

  95. Budd SL (1998) Mechanisms of neuronal damage in brain hypoxia/ischemia: focus on the role of mitochondrial calcium accumulation. Pharmacology & therapeutics 80(2):203–229

    Article  CAS  Google Scholar 

  96. Vallee L, Fontaine M, Nuyts JP, Ricart G, Krivosic I, Divry P, Vianey-Saban C, Lhermitte M et al (1994) Stroke, hemiparesis and deficient mitochondrial beta-oxidation. Eur J Pediatr 153(8):598–603

    Article  CAS  PubMed  Google Scholar 

  97. Rau TF, Lu Q, Sharma S, Sun X, Leary G, Beckman ML, Hou Y, Wainwright MS et al (2012) Oxygen glucose deprivation in rat hippocampal slice cultures results in alterations in carnitine homeostasis and mitochondrial dysfunction. PLoS One 7(9), e40881. doi:10.1371/journal.pone.0040881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li CT, Zhang WP, Lu YB, Fang SH, Yuan YM, Qi LL, Zhang LH, Huang XJ et al (2009) Oxygen-glucose deprivation activates 5-lipoxygenase mediated by oxidative stress through the p38 mitogen-activated protein kinase pathway in PC12 cells. J Neurosci Res 87(4):991–1001. doi:10.1002/jnr.21913

    Article  CAS  PubMed  Google Scholar 

  99. Behl C, Trapp T, Skutella T, Holsboer F (1997) Protection against oxidative stress-induced neuronal cell death--a novel role for RU486. Eur J Neurosci 9(5):912–920

    Article  CAS  PubMed  Google Scholar 

  100. McManus T, Sadgrove M, Pringle AK, Chad JE, Sundstrom LE (2004) Intraischaemic hypothermia reduces free radical production and protects against ischaemic insults in cultured hippocampal slices. J Neurochem 91(2):327–336. doi:10.1111/j.1471-4159.2004.02711.x

    Article  CAS  PubMed  Google Scholar 

  101. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22(9):391–397

    Article  CAS  PubMed  Google Scholar 

  102. Mehta SL, Manhas N, Raghubir R (2007) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 54(1):34–66. doi:10.1016/j.brainresrev.2006.11.003

    Article  CAS  PubMed  Google Scholar 

  103. Benakis C, Bonny C, Hirt L (2010) JNK inhibition and inflammation after cerebral ischemia. Brain Behav Immun 24(5):800–811. doi:10.1016/j.bbi.2009.11.001

    Article  CAS  PubMed  Google Scholar 

  104. Barone FC, Feuerstein GZ (1999) Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab 19(8):819–834

    Article  CAS  PubMed  Google Scholar 

  105. del Zoppo GJ, Becker KJ, Hallenbeck JM (2001) Inflammation after stroke: is it harmful? Arch Neurol 58(4):669–672

    PubMed  Google Scholar 

  106. Edwards JP, Zhang X, Frauwirth KA, Mosser DM (2006) Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 80(6):1298–1307. doi:10.1189/jlb.0406249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Leonardo CC, Hall AA, Collier LA, Gottschall PE, Pennypacker KR (2009) Inhibition of gelatinase activity reduces neural injury in an ex vivo model of hypoxia-ischemia. Neuroscience 160(4):755–766. doi:10.1016/j.neuroscience.2009.02.080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Suuronen T, Huuskonen J, Pihlaja R, Kyrylenko S, Salminen A (2003) Regulation of microglial inflammatory response by histone deacetylase inhibitors. J Neurochem 87(2):407–416

    Article  CAS  PubMed  Google Scholar 

  109. Yoshinaga H, Watanabe M, Manome Y (2003) Possible role of nicaraven in neuroprotective effect on hippocampal slice culture. Can J Physiol Pharmacol 81(7):683–689. doi:10.1139/y03-060

    Article  CAS  PubMed  Google Scholar 

  110. O’Dell TJ, Hawkins RD, Kandel ER, Arancio O (1991) Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc Natl Acad Sci U S A 88(24):11285–11289

    Article  PubMed  PubMed Central  Google Scholar 

  111. Striggow F, Riek M, Breder J, Henrich-Noack P, Reymann KG, Reiser G (2000) The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations. Proc Natl Acad Sci U S A 97(5):2264–2269. doi:10.1073/pnas.040552897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Thevenet J, Angelillo-Scherrer A, Price M, Hirt L (2009) Coagulation factor Xa activates thrombin in ischemic neural tissue. J Neurochem 111(3):828–836. doi:10.1111/j.1471-4159.2009.06369.x

    Article  CAS  PubMed  Google Scholar 

  113. Mirante O, Price M, Puentes W, Castillo X, Benakis C, Thevenet J, Monard D, Hirt L (2013) Endogenous protease nexin-1 protects against cerebral ischemia. Int J Mol Sci 14(8):16719–16731. doi:10.3390/ijms140816719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Granziera C, Thevenet J, Price M, Wiegler K, Magistretti PJ, Badaut J, Hirt L (2007) Thrombin-induced ischemic tolerance is prevented by inhibiting c-jun N-terminal kinase. Brain Res 1148:217–225. doi:10.1016/j.brainres.2007.02.025

    Article  CAS  PubMed  Google Scholar 

  115. Coronado VG, Xu L, Basavaraju SV, McGuire LC, Wald MM, Faul MD, Guzman BR, Hemphill JD et al (2011) Surveillance for traumatic brain injury-related deaths--United States, 1997–2007. MMWR Surveill Summ 60(5):1–32

    PubMed  Google Scholar 

  116. Ghajar J (2000) Traumatic brain injury. Lancet 356 (9233):923–929. doi:10.1016/S0140-6736(00)02689-1

  117. Di Pietro V, Amin D, Pernagallo S, Lazzarino G, Tavazzi B, Vagnozzi R, Pringle A, Belli A (2010) Transcriptomics of traumatic brain injury: gene expression and molecular pathways of different grades of insult in a rat organotypic hippocampal culture model. J Neurotrauma 27(2):349–359. doi:10.1089/neu.2009.1095

    Article  PubMed  Google Scholar 

  118. Coburn M, Maze M, Franks NP (2008) The neuroprotective effects of xenon and helium in an in vitro model of traumatic brain injury. Crit Care Med 36(2):588–595. doi:10.1097/01.CCM.0B013E3181611F8A6

    Article  CAS  PubMed  Google Scholar 

  119. Di Pietro V, Amorini AM, Tavazzi B, Hovda DA, Signoretti S, Giza CC, Lazzarino G, Vagnozzi R et al (2013) Potentially neuroprotective gene modulation in an in vitro model of mild traumatic brain injury. Mol Cell Biochem 375(1–2):185–198. doi:10.1007/s11010-012-1541-2

    Article  CAS  PubMed  Google Scholar 

  120. Morrison B 3rd, Cater HL, Wang CC, Thomas FC, Hung CT, Ateshian GA, Sundstrom LE (2003) A tissue level tolerance criterion for living brain developed with an in vitro model of traumatic mechanical loading. Stapp Car Crash J 47:93–105

    PubMed  Google Scholar 

  121. Morrison B 3rd, Cater HL, Benham CD, Sundstrom LE (2006) An in vitro model of traumatic brain injury utilising two-dimensional stretch of organotypic hippocampal slice cultures. J Neurosci Methods 150(2):192–201. doi:10.1016/j.jneumeth.2005.06.014

    Article  PubMed  Google Scholar 

  122. Cater HL, Sundstrom LE, Morrison B 3rd (2006) Temporal development of hippocampal cell death is dependent on tissue strain but not strain rate. J Biomech 39(15):2810–2818. doi:10.1016/j.jbiomech.2005.09.023

    Article  PubMed  Google Scholar 

  123. Elkin BS, Morrison B 3rd (2007) Region-specific tolerance criteria for the living brain. Stapp Car Crash J 51:127–138

    PubMed  Google Scholar 

  124. Schoeler M, Loetscher PD, Rossaint R, Fahlenkamp AV, Eberhardt G, Rex S, Weis J, Coburn M (2012) Dexmedetomidine is neuroprotective in an in vitro model for traumatic brain injury. BMC Neurol 12:20. doi:10.1186/1471-2377-12-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Alexander MP (1995) Mild traumatic brain injury: pathophysiology, natural history, and clinical management. Neurology 45(7):1253–1260

    Article  CAS  PubMed  Google Scholar 

  126. Utagawa A, Bramlett HM, Daniels L, Lotocki G, Dekaban GA, Weaver LC, Dietrich WD (2008) Transient blockage of the CD11d/CD18 integrin reduces contusion volume and macrophage infiltration after traumatic brain injury in rats. Brain Res 1207:155–163. doi:10.1016/j.brainres.2008.02.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Clausen F, Lorant T, Lewen A, Hillered L (2007) T lymphocyte trafficking: a novel target for neuroprotection in traumatic brain injury. J Neurotrauma 24(8):1295–1307. doi:10.1089/neu.2006.0258

    Article  PubMed  Google Scholar 

  128. Zhang Z, Zhang ZY, Wu Y, Schluesener HJ (2012) Lesional accumulation of CD163+ macrophages/microglia in rat traumatic brain injury. Brain Res 1461:102–110. doi:10.1016/j.brainres.2012.04.038

    Article  CAS  PubMed  Google Scholar 

  129. Fluiter K, Opperhuizen AL, Morgan BP, Baas F, Ramaglia V (2014) Inhibition of the membrane attack complex of the complement system reduces secondary neuroaxonal loss and promotes neurologic recovery after traumatic brain injury in mice. J Immunol 192(5):2339–2348. doi:10.4049/jimmunol.1302793

    Article  CAS  PubMed  Google Scholar 

  130. Bellander BM, Olafsson IH, Ghatan PH, Bro Skejo HP, Hansson LO, Wanecek M, Svensson MA (2011) Secondary insults following traumatic brain injury enhance complement activation in the human brain and release of the tissue damage marker S100B. Acta Neurochir (Wien) 153(1):90–100. doi:10.1007/s00701-010-0737-z

    Article  Google Scholar 

  131. Bellander BM, Bendel O, Von Euler G, Ohlsson M, Svensson M (2004) Activation of microglial cells and complement following traumatic injury in rat entorhinal-hippocampal slice cultures. J Neurotrauma 21(5):605–615. doi:10.1089/089771504774129937

    Article  PubMed  Google Scholar 

  132. Smith SL, Andrus PK, Zhang JR, Hall ED (1994) Direct measurement of hydroxyl radicals, lipid peroxidation, and blood–brain barrier disruption following unilateral cortical impact head injury in the rat. J Neurotrauma 11(4):393–404

    Article  CAS  PubMed  Google Scholar 

  133. Pacher P, Mackie K (2012) Interplay of cannabinoid 2 (CB2) receptors with nitric oxide synthases, oxidative and nitrative stress, and cell death during remote neurodegeneration. J Mol Med (Berl) 90(4):347–351. doi:10.1007/s00109-012-0884-1

    Article  CAS  Google Scholar 

  134. Mustafa AG, Singh IN, Wang J, Carrico KM, Hall ED (2010) Mitochondrial protection after traumatic brain injury by scavenging lipid peroxyl radicals. J Neurochem 114(1):271–280. doi:10.1111/j.1471-4159.2010.06749.x

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Singh IN, Gilmer LK, Miller DM, Cebak JE, Wang JA, Hall ED (2013) Phenelzine mitochondrial functional preservation and neuroprotection after traumatic brain injury related to scavenging of the lipid peroxidation-derived aldehyde 4-hydroxy-2-nonenal. J Cereb Blood Flow Metab 33(4):593–599. doi:10.1038/jcbfm.2012.211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Long DA, Ghosh K, Moore AN, Dixon CE, Dash PK (1996) Deferoxamine improves spatial memory performance following experimental brain injury in rats. Brain Res 717(1–2):109–117

    Article  CAS  PubMed  Google Scholar 

  137. Huang Y, Huang X (2014) [Course of acute oxidative damage after traumatic brain injury: problem and strategy]. Zhong Nan Da Xue Xue Bao Yi Xue Ban 39 (2):195–198. doi:10.11817/j.issn.1672-7347.2014.02.015

  138. Avramescu S, Timofeev I (2008) Synaptic strength modulation after cortical trauma: a role in epileptogenesis. J Neurosci 28(27):6760–6772. doi:10.1523/JNEUROSCI.0643-08.2008

    Article  CAS  PubMed  Google Scholar 

  139. Annegers JF, Coan SP (2000) The risks of epilepsy after traumatic brain injury. Seizure 9(7):453–457. doi:10.1053/seiz.2000.0458

    Article  CAS  PubMed  Google Scholar 

  140. Kao C, Forbes JA, Jermakowicz WJ, Sun DA, Davis B, Zhu J, Lagrange AH, Konrad PE (2012) Suppression of thalamocortical oscillations following traumatic brain injury in rats. J Neurosurg 117(2):316–323. doi:10.3171/2012.4.JNS111170

    Article  PubMed  Google Scholar 

  141. McKinney RA, Debanne D, Gahwiler BH, Thompson SM (1997) Lesion-induced axonal sprouting and hyperexcitability in the hippocampus in vitro: implications for the genesis of posttraumatic epilepsy. Nat Med 3(9):990–996

    Article  CAS  PubMed  Google Scholar 

  142. Sun D, Bullock MR, Altememi N, Zhou Z, Hagood S, Rolfe A, McGinn MJ, Hamm R et al (2010) The effect of epidermal growth factor in the injured brain after trauma in rats. J Neurotrauma 27(5):923–938. doi:10.1089/neu.2009.1209

    Article  PubMed  PubMed Central  Google Scholar 

  143. Johanson C, Stopa E, Baird A, Sharma H (2011) Traumatic brain injury and recovery mechanisms: peptide modulation of periventricular neurogenic regions by the choroid plexus-CSF nexus. J Neural Transm 118(1):115–133. doi:10.1007/s00702-010-0498-0

    Article  CAS  PubMed  Google Scholar 

  144. Rosenblad C, Martinez-Serrano A, Bjorklund A (1998) Intrastriatal glial cell line-derived neurotrophic factor promotes sprouting of spared nigrostriatal dopaminergic afferents and induces recovery of function in a rat model of Parkinson’s disease. Neuroscience 82(1):129–137

    Article  CAS  PubMed  Google Scholar 

  145. Kurihara D, Yamashita T (2012) Chondroitin sulfate proteoglycans down-regulate spine formation in cortical neurons by targeting tropomyosin-related kinase B (TrkB) protein. J Biol Chem 287(17):13822–13828. doi:10.1074/jbc.M111.314070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gill R, Chang PK, Prenosil GA, Deane EC, McKinney RA (2013) Blocking brain-derived neurotrophic factor inhibits injury-induced hyperexcitability of hippocampal CA3 neurons. Eur J Neurosci 38(11):3554–3566. doi:10.1111/ejn.12367

    Article  PubMed  Google Scholar 

  147. Daviaud N, Garbayo E, Schiller PC, Perez-Pinzon M, Montero-Menei CN (2013) Organotypic cultures as tools for optimizing central nervous system cell therapies. Exp Neurol 248:429–440. doi:10.1016/j.expneurol.2013.07.012

    Article  PubMed  Google Scholar 

  148. Lossi L, Alasia S, Salio C, Merighi A (2009) Cell death and proliferation in acute slices and organotypic cultures of mammalian CNS. Prog Neurobiol 88(4):221–245. doi:10.1016/j.pneurobio.2009.01.002

    Article  PubMed  Google Scholar 

  149. de Almeida LM, Leite MC, Thomazi AP, Battu C, Nardin P, Tortorelli LS, Zanotto C, Posser T et al (2008) Resveratrol protects against oxidative injury induced by H2O2 in acute hippocampal slice preparations from Wistar rats. Arch Biochem Biophys 480(1):27–32. doi:10.1016/j.abb.2008.09.006

    Article  PubMed  CAS  Google Scholar 

  150. Mielke JG (2013) Susceptibility to oxygen-glucose deprivation is reduced in acute hippocampal slices from euthermic Syrian golden hamsters relative to slices from Sprague–Dawley rats. Neurosci Lett 553:13–17. doi:10.1016/j.neulet.2013.07.050

    Article  CAS  PubMed  Google Scholar 

  151. Sarntinoranont M, Lee SJ, Hong Y, King MA, Subhash G, Kwon J, Moore DF (2012) High-strain-rate brain injury model using submerged acute rat brain tissue slices. J Neurotrauma 29(2):418–429. doi:10.1089/neu.2011.1772

    Article  PubMed  Google Scholar 

  152. Takano T, He W, Han X, Wang F, Xu Q, Wang X, Oberheim Bush NA, Cruz N et al (2014) Rapid manifestation of reactive astrogliosis in acute hippocampal brain slices. Glia 62(1):78–95. doi:10.1002/glia.22588

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by an AHA Mid-Atlantic Affiliate Grant-in-Aid 13GRNT15730001, NIH grants R01NS078026 and R01AT007317 (JW), and an AHA Mid-Atlantic Affiliate Postdoctoral Fellowship Award (XH).

Compliance with ethical standards

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Additional information

Qian Li and Xiaoning Han contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Han, X. & Wang, J. Organotypic Hippocampal Slices as Models for Stroke and Traumatic Brain Injury. Mol Neurobiol 53, 4226–4237 (2016). https://doi.org/10.1007/s12035-015-9362-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9362-4

Keywords

Navigation