Skip to main content

Advertisement

Log in

Cocaine-Mediated Autophagy in Astrocytes Involves Sigma 1 Receptor, PI3K, mTOR, Atg5/7, Beclin-1 and Induces Type II Programed Cell Death

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cocaine, a commonly used drug of abuse, has been shown to cause neuropathological dysfunction and damage in the human brain. However, the role of autophagy in this process is not defined. Autophagy, generally protective in nature, can also be destructive leading to autophagic cell death. This study was designed to investigate whether cocaine induces autophagy in the cells of CNS origin. We employed astrocyte, the most abundant cell in the CNS, to define the effects of cocaine on autophagy. We measured levels of the autophagic marker protein LC3II in SVGA astrocytes after exposure with cocaine. The results showed that cocaine caused an increase in LC3II level in a dose- and time-dependent manner, with the peak observed at 1 mM cocaine after 6-h exposure. This result was also confirmed by detecting LC3II in SVGA astrocytes using confocal microscopy and transmission electron microscopy. Next, we sought to explore the mechanism by which cocaine induces the autophagic response. We found that cocaine-induced autophagy was mediated by sigma 1 receptor, and autophagy signaling proteins p-mTOR, Atg5, Atg7, and p-Bcl-2/Beclin-1 were also involved, and this was confirmed by using selective inhibitors and small interfering RNAs (siRNAs). In addition, we found that chronic treatment with cocaine resulted in cell death, which is caspase-3 independent and can be ameliorated by autophagy inhibitor. Therefore, this study demonstrated that cocaine induces autophagy in astrocytes and is associated with autophagic cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig 7

Similar content being viewed by others

References

  1. Gawin FH (1991) Cocaine addiction: psychology and neurophysiology. Science 251(5001):1580–1586

    Article  CAS  PubMed  Google Scholar 

  2. Flores ED, Lange RA, Cigarroa RG, Hillis LD (1990) Effect of cocaine on coronary artery dimensions in atherosclerotic coronary artery disease: enhanced vasoconstriction at sites of significant stenoses. J Am Coll Cardiol 16(1):74–79

    Article  CAS  PubMed  Google Scholar 

  3. Satel SL, Southwick SM, Gawin FH (1991) Clinical features of cocaine-induced paranoia. Am J Psychiatry 148(4):495–498

    Article  CAS  PubMed  Google Scholar 

  4. Vonmoos M, Hulka LM, Preller KH, Jenni D, Baumgartner MR, Stohler R, Bolla KI, Quednow BB (2013) Cognitive dysfunctions in recreational and dependent cocaine users: role of attention-deficit hyperactivity disorder, craving and early age at onset. Br J Psychiatry 203(1):35–43. doi:10.1192/bjp.bp.112.118091

    Article  PubMed  Google Scholar 

  5. Morrow CE, Culbertson JL, Accornero VH, Xue L, Anthony JC, Bandstra ES (2006) Learning disabilities and intellectual functioning in school-aged children with prenatal cocaine exposure. Dev Neuropsychol 30(3):905–931. doi:10.1207/s15326942dn3003_8

    Article  PubMed  PubMed Central  Google Scholar 

  6. Serper MR, Bergman A, Copersino ML, Chou JC, Richarme D, Cancro R (2000) Learning and memory impairment in cocaine-dependent and comorbid schizophrenic patients. Psychiatry Res 93(1):21–32

    Article  CAS  PubMed  Google Scholar 

  7. Potvin S, Stavro K, Rizkallah E, Pelletier J (2014) Cocaine and cognition: a systematic quantitative review. J Addict Med 8(5):368–376. doi:10.1097/ADM.0000000000000066

    Article  CAS  PubMed  Google Scholar 

  8. Pavlovsky AA, Boehning D, Li D, Zhang Y, Fan X, Green TA (2013) Psychological stress, cocaine and natural reward each induce endoplasmic reticulum stress genes in rat brain. Neuroscience 246:160–169. doi:10.1016/j.neuroscience.2013.04.057

    Article  CAS  PubMed  Google Scholar 

  9. Shin EH, Bian S, Shim YB, Rahman MA, Chung KT, Kim JY, Wang JQ, Choe ES (2007) Cocaine increases endoplasmic reticulum stress protein expression in striatal neurons. Neuroscience 145(2):621–630. doi:10.1016/j.neuroscience.2006.12.013

    Article  CAS  PubMed  Google Scholar 

  10. Pandhare J, Addai AB, Mantri CK, Hager C, Smith RM, Barnett L, Villalta F, Kalams SA et al (2014) Cocaine enhances HIV-1-induced CD4(+) T-cell apoptosis: implications in disease progression in cocaine-abusing HIV-1 patients. Am J Pathol 184(4):927–936. doi:10.1016/j.ajpath.2013.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Silverstein PS, Shah A, Weemhoff J, Kumar S, Singh DP, Kumar A (2012) HIV-1 gp120 and drugs of abuse: interactions in the central nervous system. Curr HIV Res 10(5):369–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sordi AO, Pechansky F, Kessler FH, Kapczinski F, Pfaffenseller B, Gubert C, de Aguiar BW, de Magalhaes Narvaez JC et al (2014) Oxidative stress and BDNF as possible markers for the severity of crack cocaine use in early withdrawal. Psychopharmacology (Berl) 231(20):4031–4039. doi:10.1007/s00213-014-3542-1

    Article  CAS  Google Scholar 

  13. Cerretani D, Fineschi V, Bello S, Riezzo I, Turillazzi E, Neri M (2012) Role of oxidative stress in cocaine-induced cardiotoxicity and cocaine-related death. Curr Med Chem 19(33):5619–5623

    Article  CAS  PubMed  Google Scholar 

  14. Olney JW, Wozniak DF, Jevtovic-Todorovic V, Farber NB, Bittigau P, Ikonomidou C (2002) Drug-induced apoptotic neurodegeneration in the developing brain. Brain Pathol 12(4):488–498

    Article  CAS  PubMed  Google Scholar 

  15. Mao J, Sung B, Ji RR, Lim G (2002) Neuronal apoptosis associated with morphine tolerance: evidence for an opioid-induced neurotoxic mechanism. J Neurosci 22(17):7650–7661

    CAS  PubMed  Google Scholar 

  16. Norenberg MD (1994) Astrocyte responses to CNS injury. J Neuropathol Exp Neurol 53(3):213–220

    Article  CAS  PubMed  Google Scholar 

  17. Chen Y, Swanson RA (2003) Astrocytes and brain injury. J Cereb Blood Flow Metab 23(2):137–149

    Article  PubMed  Google Scholar 

  18. Thompson KA, McArthur JC, Wesselingh SL (2001) Correlation between neurological progression and astrocyte apoptosis in HIV-associated dementia. Ann Neurol 49(6):745–752

    Article  CAS  PubMed  Google Scholar 

  19. Zhang F, Yao SY, Whetsell WO Jr, Sriram S (2013) Astrogliopathy and oligodendrogliopathy are early events in CNS demyelination. Glia 61(8):1261–1273. doi:10.1002/glia.22513

    Article  PubMed  Google Scholar 

  20. Jo WK, Law AC, Chung SK (2014) The neglected co-star in the dementia drama: the putative roles of astrocytes in the pathogeneses of major neurocognitive disorders. Mol Psychiatry 19(2):159–167. doi:10.1038/mp.2013.171

    Article  CAS  PubMed  Google Scholar 

  21. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477

    Article  CAS  PubMed  Google Scholar 

  22. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93. doi:10.1146/annurev-genet-102808-114910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122(6):927–939. doi:10.1016/j.cell.2005.07.002

    Article  CAS  PubMed  Google Scholar 

  24. Marino G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15(2):81–94. doi:10.1038/nrm3735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8(9):741–752. doi:10.1038/nrm2239

    Article  CAS  PubMed  Google Scholar 

  26. Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J Neurosci 28(27):6926–6937. doi:10.1523/JNEUROSCI.0800-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M et al (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol Histopathol 12(1):25–31

    CAS  PubMed  Google Scholar 

  28. Larsen KE, Fon EA, Hastings TG, Edwards RH, Sulzer D (2002) Methamphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis. J Neurosci 22(20):8951–8960

    CAS  PubMed  Google Scholar 

  29. Zhao L, Zhu Y, Wang D, Chen M, Gao P, Xiao W, Rao G, Wang X et al (2010) Morphine induces Beclin 1- and ATG5-dependent autophagy in human neuroblastoma SH-SY5Y cells and in the rat hippocampus. Autophagy 6(3):386–394

    Article  CAS  PubMed  Google Scholar 

  30. El-Hage N, Rodriguez M, Dever SM, Masvekar RR, Gewirtz DA, Shacka JJ (2014) HIV-1 and morphine regulation of autophagy in microglia: limited interactions in the context of HIV-1 infection and opioid abuse. J Virol. doi:10.1128/JVI.02022-14

    PubMed  PubMed Central  Google Scholar 

  31. Ma J, Wan J, Meng J, Banerjee S, Ramakrishnan S, Roy S (2014) Methamphetamine induces autophagy as a pro-survival response against apoptotic endothelial cell death through the Kappa opioid receptor. Cell Death Dis 5:e1099. doi:10.1038/cddis.2014.64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Funakoshi-Hirose I, Aki T, Unuma K, Funakoshi T, Noritake K, Uemura K (2013) Distinct effects of methamphetamine on autophagy-lysosome and ubiquitin-proteasome systems in HL-1 cultured mouse atrial cardiomyocytes. Toxicology 312:74–82. doi:10.1016/j.tox.2013.07.016

    Article  CAS  PubMed  Google Scholar 

  33. Li Y, Hu Z, Chen B, Bu Q, Lu W, Deng Y, Zhu R, Shao X et al (2012) Taurine attenuates methamphetamine-induced autophagy and apoptosis in PC12 cells through mTOR signaling pathway. Toxicol Lett 215(1):1–7. doi:10.1016/j.toxlet.2012.09.019

    Article  CAS  PubMed  Google Scholar 

  34. Chandramani Shivalingappa P, Jin H, Anantharam V, Kanthasamy A (2012) N-acetyl cysteine protects against methamphetamine-induced dopaminergic neurodegeneration via modulation of redox status and autophagy in dopaminergic cells. Park Dis 2012:424285. doi:10.1155/2012/424285

    Google Scholar 

  35. Narayanan S, Mesangeau C, Poupaert JH, McCurdy CR (2011) Sigma receptors and cocaine abuse. Curr Top Med Chem 11(9):1128–1150

    Article  CAS  PubMed  Google Scholar 

  36. Kourrich S, Hayashi T, Chuang JY, Tsai SY, Su TP, Bonci A (2013) Dynamic interaction between sigma-1 receptor and Kv1.2 shapes neuronal and behavioral responses to cocaine. Cell 152(1-2):236–247. doi:10.1016/j.cell.2012.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McCracken KA, Bowen WD, de Costa BR, Matsumoto RR (1999) Two novel sigma receptor ligands, BD1047 and LR172, attenuate cocaine-induced toxicity and locomotor activity. Eur J Pharmacol 370(3):225–232

    Article  CAS  PubMed  Google Scholar 

  38. Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, Ong CN, Codogno P et al (2010) Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 285(14):10850–10861. doi:10.1074/jbc.M109.080796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hayashi Y, Koga Y, Zhang X, Peters C, Yanagawa Y, Wu Z, Yokoyama T, Nakanishi H (2014) Autophagy in superficial spinal dorsal horn accelerates the cathepsin B-dependent morphine antinociceptive tolerance. Neuroscience 275:384–394. doi:10.1016/j.neuroscience.2014.06.037

    Article  CAS  PubMed  Google Scholar 

  40. Nopparat C, Porter JE, Ebadi M, Govitrapong P (2010) The mechanism for the neuroprotective effect of melatonin against methamphetamine-induced autophagy. J Pineal Res 49(4):382–389. doi:10.1111/j.1600-079X.2010.00805.x

    Article  CAS  PubMed  Google Scholar 

  41. Blaho K, Logan B, Winbery S, Park L, Schwilke E (2000) Blood cocaine and metabolite concentrations, clinical findings, and outcome of patients presenting to an ED. Am J Emerg Med 18(5):593–598. doi:10.1053/ajem.2000.9282

    Article  CAS  PubMed  Google Scholar 

  42. Patel F (1996) A high fatal postmortem blood concentration of cocaine in a drug courier. Forensic Sci Int 79(3):167–174

    Article  CAS  PubMed  Google Scholar 

  43. Peretti FJ, Isenschmid DS, Levine B, Caplan YH, Smialek JE (1990) Cocaine fatality: an unexplained blood concentration in a fatal overdose. Forensic Sci Int 48(2):135–138

    Article  CAS  PubMed  Google Scholar 

  44. Heard K, Palmer R, Zahniser NR (2008) Mechanisms of acute cocaine toxicity. Open Pharmacol J 2(9):70–78. doi:10.2174/1874143600802010070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ (1987) Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237(4819):1219–1223

    Article  CAS  PubMed  Google Scholar 

  46. Little KY, Patel UN, Clark TB, Butts JD (1996) Alteration of brain dopamine and serotonin levels in cocaine users: a preliminary report. Am J Psychiatry 153(9):1216–1218

    Article  CAS  PubMed  Google Scholar 

  47. Hayashi T, Su T (2005) The sigma receptor: evolution of the concept in neuropsychopharmacology. Curr Neuropharmacol 3(4):267–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Klouz A, Tillement JP, Boussard MF, Wierzbicki M, Berezowski V, Cecchelli R, Labidalle S, Onteniente B et al (2003) [3H]BHDP as a novel and selective ligand for sigma1 receptors in liver mitochondria and brain synaptosomes of the rat. FEBS Lett 553(1-2):157–162

    Article  CAS  PubMed  Google Scholar 

  49. Xu YT, Kaushal N, Shaikh J, Wilson LL, Mesangeau C, McCurdy CR, Matsumoto RR (2010) A novel substituted piperazine, CM156, attenuates the stimulant and toxic effects of cocaine in mice. J Pharmacol Exp Ther 333(2):491–500. doi:10.1124/jpet.109.161398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Matsumoto RR, McCracken KA, Pouw B, Miller J, Bowen WD, Williams W, De Costa BR (2001) N-alkyl substituted analogs of the sigma receptor ligand BD1008 and traditional sigma receptor ligands affect cocaine-induced convulsions and lethality in mice. Eur J Pharmacol 411(3):261–273

    Article  CAS  PubMed  Google Scholar 

  51. Matsumoto RR, McCracken KA, Pouw B, Zhang Y, Bowen WD (2002) Involvement of sigma receptors in the behavioral effects of cocaine: evidence from novel ligands and antisense oligodeoxynucleotides. Neuropharmacology 42(8):1043–1055

    Article  CAS  PubMed  Google Scholar 

  52. Barth S, Glick D, Macleod KF (2010) Autophagy: assays and artifacts. J Pathol 221(2):117–124. doi:10.1002/path.2694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3(6):542–545

    Article  CAS  PubMed  Google Scholar 

  54. Marquez RT, Xu L (2012) Bcl-2: Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am J Cancer Res 2(2):214–221

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Levine B, Sinha S, Kroemer G (2008) Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 4(5):600–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G et al (2007) Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 26(10):2527–2539. doi:10.1038/sj.emboj.7601689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584(7):1287–1295. doi:10.1016/j.febslet.2010.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chiang GG, Abraham RT (2005) Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase. J Biol Chem 280(27):25485–25490. doi:10.1074/jbc.M501707200

    Article  CAS  PubMed  Google Scholar 

  59. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132. doi:10.1146/annurev-cellbio-092910-154005

    Article  CAS  PubMed  Google Scholar 

  60. Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Investig 115(10):2679–2688. doi:10.1172/JCI26390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bursch W (2001) The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ 8(6):569–581. doi:10.1038/sj.cdd.4400852

    Article  CAS  PubMed  Google Scholar 

  62. Gozuacik D, Kimchi A (2007) Autophagy and cell death. Curr Top Dev Biol 78:217–245. doi:10.1016/S0070-2153(06)78006-1

    Article  CAS  PubMed  Google Scholar 

  63. Baehrecke EH (2005) Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 6(6):505–510. doi:10.1038/nrm1666

    Article  CAS  PubMed  Google Scholar 

  64. Duan Y, Ke J, Zhang H, He Y, Sun G, Sun X (2014) Autophagic cell death of human hepatoma G2 cells mediated by procyanidins from Castanea mollissima Bl. Shell-induced reactive oxygen species generation. Chem Biol Interact. doi:10.1016/j.cbi.2014.09.021

    PubMed  Google Scholar 

  65. Gao Q, Liu H, Yao Y, Geng L, Zhang X, Jiang L, Shi B, Yang F (2014) Carnosic acid induces autophagic cell death through inhibition of the Akt/mTOR pathway in human hepatoma cells. J Appl Toxicol. doi:10.1002/jat.3049

    PubMed Central  Google Scholar 

  66. Chen YJ, Chi CW, Su WC, Huang HL (2014) Lapatinib induces autophagic cell death and inhibits growth of human hepatocellular carcinoma. Oncotarget 5(13):4845–4854

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cao B, Li J, Zhou X, Juan J, Han K, Zhang Z, Kong Y, Wang J et al (2014) Clioquinol induces pro-death autophagy in leukemia and myeloma cells by disrupting the mTOR signaling pathway. Sci Rep 4:5749. doi:10.1038/srep05749

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Takeuchi R, Hoshijima H, Nagasaka H, Chowdhury SA, Kikuchi H, Kanda Y, Kunii S, Kawase M et al (2006) Induction of non-apoptotic cell death by morphinone in human promyelocytic leukemia HL-60 cells. Anticancer Res 26(5A):3343–3348

    CAS  PubMed  Google Scholar 

  69. Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P, Ogier-Denis E (2001) The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 276(38):35243–35246. doi:10.1074/jbc.C100319200

    Article  CAS  PubMed  Google Scholar 

  70. Xing C, Zhu B, Liu H, Yao H, Zhang L (2008) Class I phosphatidylinositol 3-kinase inhibitor LY294002 activates autophagy and induces apoptosis through p53 pathway in gastric cancer cell line SGC7901. Acta Biochim Biophys Sin 40(3):194–201

    Article  CAS  PubMed  Google Scholar 

  71. O’Farrell F, Rusten TE, Stenmark H (2013) Phosphoinositide 3-kinases as accelerators and brakes of autophagy. FEBS J 280(24):6322–6337. doi:10.1111/febs.12486

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by grants from National Institute on Drug Abuse (DA025528 and DA025011). We also acknowledge the use of the confocal microscope in the University Missouri, Kansas City School of Dentistry Confocal Microscopy Core. This facility is supported by the UMKC Office of Research Services, UMKC Center of Excellence in Dental and Musculoskeletal Tissues, and NIH grant S10RR027668.

Author Contributions

LC, MW, SK, MF, and AK conceptualized and designed the project. LC did all the experiments and analyzed the data. LC wrote the first draft of the manuscript, and AK finalized the manuscript for submission.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Walker, M.P., Vaidya, N.K. et al. Cocaine-Mediated Autophagy in Astrocytes Involves Sigma 1 Receptor, PI3K, mTOR, Atg5/7, Beclin-1 and Induces Type II Programed Cell Death. Mol Neurobiol 53, 4417–4430 (2016). https://doi.org/10.1007/s12035-015-9377-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9377-x

Keywords

Navigation