Skip to main content

Advertisement

Log in

Association of Single-Nucleotide Polymorphism in ANK1 with Late-Onset Alzheimer’s Disease in Han Chinese

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Recently, two CpG sites in ankyrin 1 (ANK1) gene were identified to be hypermethylated and associated with Alzheimer’s disease (AD)-related neuropathology in two large independent studies. Genetic variations are indicated to be involved in DNA methylation, especially when the associated single-nucleotide polymorphisms (SNPs) are located adjacent to the CpG site. Accordingly, ANK1 polymorphisms might contribute to late-onset AD (LOAD) risk. One polymorphism rs515071 was identified to be a potential risk factor for type 2 diabetes (T2D). As shared genetic background was found underlying T2D and AD, we postulate that rs515071 polymorphism may be associated with late-onset AD (LOAD) risk and assessed the association in 982 LOAD patients and 1346 sex- and age-matched healthy controls. Our results showed that minor allele A of rs515071 significantly increased LOAD risk in the APOE ε4 (+) subgroup (genotype P = 0.015, allele P = 0.020). After adjusting for age and gender, the association remained significant under the dominant model (OR = 1.809, 95 % confidence interval (CI) = 1.186–2.757, P = 0.006). In conclusion, our findings demonstrate that rs515071 in ANK1 is a novel genetic risk for LOAD susceptibility in Han Chinese.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, Fiske A, Pedersen NL (2006) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63(2):168–174

    Article  PubMed  Google Scholar 

  2. Bettens K, Sleegers K, Van Broeckhoven C (2013) Genetic insights in Alzheimer’s disease. Lancet Neurol 12(1):92–104. doi:10.1016/S1474-4422(12)70259-4

    Article  CAS  PubMed  Google Scholar 

  3. Genin E, Hannequin D, Wallon D, Sleegers K, Hiltunen M, Combarros O, Bullido MJ, Engelborghs S et al (2011) APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol Psychiatry 16(9):903–907. doi:10.1038/mp.201152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41(10):1088–1093. doi:10.1038/ng.440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41(10):1094–1099. doi:10.1038/ng.439

    Article  CAS  PubMed  Google Scholar 

  6. Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, Bis JC, Smith AV et al (2010) Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303(18):1832–1840. doi:10.1001/jama.2010574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, Abraham R, Hamshere ML et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43(5):429–435. doi:10.1038/ng.803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD et al Nat Genet 43(5): 436-441. doi: 101038/ng801

  9. Tan L, Yu JT, Zhang W, Wu ZC, Zhang Q, Liu QY, Wang W, Wang HF et al (2013) Association of GWAS-linked loci with late-onset Alzheimer’s disease in a northern Han Chinese population. Alzheimers Dement 9(5):546–553. doi:10.1016/j.jalz.2012.08.007

    Article  PubMed  Google Scholar 

  10. Bennett V, Baines AJ (2001) Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 81(3):1353–1392

    CAS  PubMed  Google Scholar 

  11. De Jager PL, Srivastava G, Lunnon K, Burgess J, Schalkwyk LC, Yu L, Eaton ML, Keenan BT et al (2014) Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci 17(9):1156–1163

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lunnon K, Smith R, Hannon E, De Jager PL, Srivastava G, Volta M, Troakes C, Al-Sarraj S et al (2014) Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer’s disease. Nat Neurosci 17(9):1164–1170. doi:10.1038/nn.3782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Olsson AH, Volkov P, Bacos K, Dayeh T, Hall E, Nilsson EA, Ladenvall C, Rönn T et al (2014) Genome-wide associations between genetic and epigenetic variation influence mRNA expression and insulin secretion in human pancreatic islets. PLoS Genet 10(11):e1004735. doi:10.1371/journal.pgen.1004735

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, Reinius L, Acevedo N et al (2013) Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 31(2):142–147. doi:10.1038/nbt.2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang D, Cheng L, Badner JA, Chen C, Chen Q, Luo W, Craig DW, Redman M et al (2010) Genetic control of individual differences in gene-specific methylation in human brain. Am J Hum Genet 86(3):411–419. doi:10.1016/j.ajhg.2010.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Y, Li X, Aryee MJ, Ekström TJ, Padyukov L, Klareskog L, Vandiver A, Moore AZ et al (2014) GeMes, clusters of DNA methylation under genetic control, can inform genetic and epigenetic analysis of disease. Am J Hum Genet 94(4):485–495. doi:10.1016/j.ajhg.2014.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McRae AF, Powell JE, Henders AK, Bowdler L, Hemani G, Shah S, Painter JN, Martin NG et al (2014) Contribution of genetic variation to transgenerational inheritance of DNA methylation. Genome Biol 15(5):R73. doi:10.1186/gb-2014-15-5-r73

    Article  PubMed  PubMed Central  Google Scholar 

  18. Imamura M, Maeda S, Yamauchi T, Hara K, Yasuda K, Morizono T, Takahashi A, Horikoshi M et al (2012) A single-nucleotide polymorphism in ANK1 is associated with susceptibility to type 2 diabetes in Japanese populations. Hum Mol Genet 21(13):3042–3049. doi:10.1093/hmg/dds113

    Article  CAS  PubMed  Google Scholar 

  19. Keaton JM, Cooke Bailey JN, Palmer ND, Freedman BI, Langefeld CD, Ng MC, Bowden DW (2014) A comparison of type 2 diabetes risk allele load between African Americans and European Americans. Hum Genet 133(12):1487–1495. doi:10.1007/s00439-014-1486-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen P, Takeuchi F, Lee JY, Li H, Wu JY, Liang J, Long J, Tabara Y et al (2014) Multiple nonglycemic genomic loci are newly associated with blood level of glycated hemoglobin in East Asians. Diabetes 63(7):2551–2562. doi:10.2337/db13-1815

    Article  PubMed  PubMed Central  Google Scholar 

  21. Soranzo N, Sanna S, Wheeler E, Gieger C, Radke D, Dupuis J, Bouatia-Naji N, Langenberg C et al (2010) Common variants at 10 genomic loci influence hemoglobin A1(C) levels via glycemic and nonglycemic pathways. Diabetes 59(12):3229–3239. doi:10.2337/db10-0502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hao K, Di Narzo AF, Ho L, Luo W, Li S, Chen R, Li T, Dubner L et al (2015) Shared genetic etiology underlying Alzheimer’s disease and type 2 diabetes. Mol Aspects Med Jun 23 pii: S0098-2997(15)00041-2 doi: 101016/jmam201506006

  23. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34(7):939–944

    Article  CAS  PubMed  Google Scholar 

  24. Chen X, Li S, Yang Y, Yang X, Liu Y, Liu Y, Hu W, Jin L et al (2012) Genome-wide association study validation identifies novel loci for atherosclerotic cardiovascular disease. J Thromb Haemost 10(8):1508–1514. doi:10.1111/j.1538-7836.2012.04815.x

    Article  CAS  PubMed  Google Scholar 

  25. Yu JT, Tan L, Hardy J (2012) Apolipoprotein E in Alzheimer’s disease: an update. Annu Rev Neurosci 37:79–100. doi:10.1146/annurev-neuro-071013-014300

    Article  Google Scholar 

  26. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45(12):1452–1458. doi:10.1038/ng.2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Da Costa L, Galimand J, Fenneteau O, Mohandas N (2013) Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders. Blood Rev 27(4):167–178. doi:10.1016/j.blre.2013.04.003

    Article  PubMed  Google Scholar 

  28. Gallagher PG (2005) Hematologically important mutations: ankyrin variants in hereditary spherocytosis. Blood Cells Mol Dis 35(3):345–347

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81471309, 81371406, 81171209, 81571245, 81501103), the Scientific Research Foundation for the Excellent Middle-Aged and Youth Scientists of Shandong Province (BS2013YY028), the Shandong Provincial Outstanding Medical Academic Professional Program, Qingdao Key Health Discipline Development Fund, Qingdao Outstanding Health Professional Development Fund, and Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Tan or Jin-Tai Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Song Chi and Jing-Hui Song are regarded as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, S., Song, JH., Tan, MS. et al. Association of Single-Nucleotide Polymorphism in ANK1 with Late-Onset Alzheimer’s Disease in Han Chinese. Mol Neurobiol 53, 6476–6481 (2016). https://doi.org/10.1007/s12035-015-9547-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9547-x

Keywords

Navigation